Flask 確實提供了多種將資料轉換為回應的工具,從將 Python 物件轉換為 JSON 到建立結構化 HTTP 回應。在這篇文章中,我們將探討 jsonify()、to_dict()、make_response() 和 SerializerMixin,它們是在 Flask 中處理資料回應的四個有用的函數和工具。了解這些工具將有助於創建更好的 API 和有效的資料管理。
jsonify()
它是一個內建的 Flask 函數,可將 Python 資料結構轉換為 JSON 格式,這是一種廣泛用於 API Web 開發的輕量級資料交換格式。此函數會自動將回應 Content-Type 設為 application/json 並傳回 Flask 回應對象,非常適合在 REST API 中傳回資料。
範例:
from flask import jsonify @app.route('/data') def get_data(): data = {"message": "Hello, World!", "status": "success"} return jsonify(data)
這裡,jsonify(data) 將字典資料轉換為 JSON 格式並將其設定為回應正文。當您需要傳回小型且定義良好的資料時,此函數非常有用,因為它會為您處理 JSON 轉換和回應格式設定。需要注意的是,jsonify() 可以很好地處理簡單的資料類型,但不直接支援複雜的對象,例如 SQLAlchemy 模型,無需進行一些轉換(如使用 to_dict())。
to_dict()
它不是原生 Flask 函數,但通常在模型類別中用於將 SQLAlchemy 或其他物件關係映射 (ORM) 模型實例表示為字典。將模型屬性轉換為字典使資料更容易轉換為 API 回應的 JSON 格式。
例:
class Student(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), nullable=False) def to_dict(self): return { "id": self.id, "username": self.username } @app.route('/user/<id>') def get_student(id): student = Student.query.get(id) return jsonify(student.to_dict()) if student else jsonify({"error": "Student not found"}), 404 </id>
to_dict() 方法可讓您指定要包含在回應中的確切數據,從而提供了靈活性。它對於隱藏敏感資料(如密碼)和選擇性地僅顯示必要的屬性非常有用。
make_response()
它是一個 Flask 實用函數,可讓您建立自訂 HTTP 回應。 jsonify() 簡化了 JSON 資料回應,而 make_response() 可讓您控制回應的每個部分,包括狀態碼、標頭和資料格式。
範例:
from flask import make_response, jsonify from models import db class Student(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), nullable=False) def to_dict(self): return { "id": self.id, "username": self.username } @app.route('/student/<id>', methods=['GET']) def get_student(id): # Query the database for the student student = Student.query.get(id) # If student is found, return data with a 200 status if student: response_data = { "message": "Student found", "data": student.to_dict() } return make_response(jsonify(response_data), 200) # If student is not found, return a structured error response with a 404 status error_data = { "error": "Student not found", "student_id": id, "status_code": 404 } return make_response(jsonify(error_data), 404) </id>
這裡,make_response() 允許控制狀態碼和回應正文格式。當響應對象的控制至關重要時,這種靈活性是理想的選擇。
序列化器Mixin
它來自 sqlalchemy-serializer 函式庫,是用於自動化 SQLAlchemy 模型序列化的強大工具。它提供了一個 to_dict() 方法,可以處理包含模型之間關係的複雜資料類型,並包含一個 serialize_rules 屬性來控製欄位序列化。
用法:
from flask import jsonify @app.route('/data') def get_data(): data = {"message": "Hello, World!", "status": "success"} return jsonify(data)
SerializerMixin 會自動將 SQLAlchemy 模型轉換為字典,這在處理複雜模型和關係時非常有用。使用serialize_rules,您可以動態包含或排除欄位或關係,這可以節省您為每個模型編寫自訂 to_dict 方法的時間。
比較及其關聯
這些工具在建構 Flask API 中都有其自己的位置。 jsonify() 和 make_response() 是建立 JSON 和自訂回應的基本 Flask 函數,而 to_dict() 和 SerializerMixin 則專注於將模型實例轉換為字典,以便更輕鬆地進行 JSON 序列化。
以下是何時使用每種方法的摘要:
- 使用 jsonify() 輕鬆將簡單的 Python 資料結構轉換為 JSON 格式。
- 在模型上使用 to_dict() 建立具有特定欄位的自訂字典以進行 JSON 轉換,特別是在處理敏感或複雜資料時。
- 使用 make_response() 定義對 HTTP 回應的完全控制,讓您可以設定狀態碼、標頭或自訂錯誤訊息。
- 如果您正在使用 SQLAlchemy 模型並希望以最少的配置自動將模型(包括關係)轉換為 JSON,請使用 SerializerMixin。
總之,jsonify()、to_dict()、make_response() 和 SerializerMixin 都是在 Flask API 中轉換和管理資料的重要工具。有效地使用它們將使您的 API 更加靈活、安全且易於管理。
參考文獻
Flask 文件:make_response()
SQLAlchemy SerializerMixin
以上是了解 Flask 中的 JSONify()、to_dict()、make_response() 和 SerializerMixin的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 Linux新版
SublimeText3 Linux最新版

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

WebStorm Mac版
好用的JavaScript開發工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器