建立一個實用程式來產生 100 個 MongoDB 集合,每個集合填充 100 萬個隨機文檔,並將其部署到 Kubernetes 上涉及幾個步驟。本指南逐步介紹了從設定 Kubernetes 環境到生成集合以及在專用命名空間中部署作業的整個過程。
1. 設定 Kubernetes 環境
確保您有 Kubernetes 叢集(例如 GKE、EKS、AKS 或 Minikube)並配置 kubectl 以連接到它。
2. 建立專用命名空間
要保持此部署隔離,請建立名為 my-lab 的命名空間:
kubectl create namespace my-lab kubectl get ns my-lab
3. 在 Kubernetes 上部署 MongoDB
建立持久性磁碟區 (PV)
建立 mongo-pv.yaml 檔案來定義 MongoDB 資料的持久性磁碟區:
apiVersion: v1 kind: PersistentVolume metadata: name: mongo-pv namespace: my-lab spec: capacity: storage: 10Gi accessModes: - ReadWriteOnce hostPath: path: /data/mongo
應用PV:
kubectl apply -f mongo-pv.yaml
建立持久性磁碟區宣告 (PVC)
在 mongo-pvc.yaml 中定義持久卷聲明:
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: mongo-pvc namespace: my-lab spec: accessModes: - ReadWriteOnce resources: requests: storage: 10Gi
應用 PVC:
kubectl apply -f mongo-pvc.yaml
建立 MongoDB 部署
在 mongo-deployment.yaml 中定義 MongoDB 部署與服務:
apiVersion: apps/v1 kind: Deployment metadata: name: mongo namespace: my-lab spec: replicas: 1 selector: matchLabels: app: mongo template: metadata: labels: app: mongo spec: containers: - name: mongo image: mongo:latest ports: - containerPort: 27017 env: - name: MONGO_INITDB_ROOT_USERNAME value: "root" - name: MONGO_INITDB_ROOT_PASSWORD value: "password" volumeMounts: - name: mongo-storage mountPath: /data/db volumes: - name: mongo-storage persistentVolumeClaim: claimName: mongo-pvc --- apiVersion: v1 kind: Service metadata: name: mongo namespace: my-lab spec: type: ClusterIP ports: - port: 27017 targetPort: 27017 selector: app: mongo
應用部署:
kubectl apply -f mongo-deployment.yaml
4. 連接到 MongoDB
透過連線來驗證 MongoDB 部署:
kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password </mongo-pod-name>
5. 驗證持久性
縮減並備份 MongoDB 部署以確保資料持續存在:
kubectl scale deployment mongo --replicas=0 -n my-lab kubectl scale deployment mongo --replicas=1 -n my-lab
6. 建立一個用於生成集合的 Python 實用程序
使用 Python,定義一個腳本來建立集合並用隨機文件填充它們:
import random import string import pymongo from pymongo import MongoClient def random_string(length=10): return ''.join(random.choices(string.ascii_letters + string.digits, k=length)) def create_collections_and_populate(db_name='mydatabase', collections_count=100, documents_per_collection=1_000_000): client = MongoClient('mongodb://root:password@mongo:27017/') db = client[db_name] for i in range(collections_count): collection_name = f'collection_{i+1}' collection = db[collection_name] print(f'Creating collection: {collection_name}') bulk_data = [{'name': random_string(), 'value': random.randint(1, 100)} for _ in range(documents_per_collection)] collection.insert_many(bulk_data) print(f'Inserted {documents_per_collection} documents into {collection_name}') if __name__ == "__main__": create_collections_and_populate()
7. Docker 化 Python 實用程式
建立一個 Dockerfile 來容器化 Python 腳本:
FROM python:3.9-slim WORKDIR /app COPY mongo_populator.py . RUN pip install pymongo CMD ["python", "mongo_populator.py"]
建立鏡像並將其推送到容器註冊表:
docker build -t <your-docker-repo>/mongo-populator:latest . docker push <your-docker-repo>/mongo-populator:latest </your-docker-repo></your-docker-repo>
8. 建立 Kubernetes 作業
在 mongo-populator-job.yaml 中定義一個作業來執行集合產生腳本:
apiVersion: batch/v1 kind: Job metadata: name: mongo-populator namespace: my-lab spec: template: spec: containers: - name: mongo-populator image: <your-docker-repo>/mongo-populator:latest env: - name: MONGO_URI value: "mongodb://root:password@mongo:27017/" restartPolicy: Never backoffLimit: 4 </your-docker-repo>
申請工作:
kubectl apply -f mongo-populator-job.yaml
9. 驗證集合生成
作業完成後,連接到 MongoDB 檢查資料:
kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password </mongo-pod-name>
在 MongoDB 中:
use mydatabase show collections db.collection_9.find().limit(5).pretty() db.getCollectionNames().forEach(function(collection) { var count = db[collection].countDocuments(); print(collection + ": " + count + " documents"); });
每個集合應包含 100 萬個文檔,確認資料產生作業成功。
以上是在 Kubernetes 上部署 MongoDB 集合產生器的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。