嘿開發社群! ?我很高興與大家分享建立 ErgoVision 的歷程,這是一個由人工智慧驅動的系統,透過即時姿勢分析使工作場所更加安全。讓我們深入探討技術挑戰和解決方案!
當德州 A&M 大學的 SIIR-Lab 向我尋求建立即時姿勢分析系統時,我們面臨幾個關鍵挑戰:
# Core dependencies import mediapipe as mp import cv2 import numpy as np
最大的挑戰是實現即時分析。我們是這樣解決的:
def process_frame(self, frame): # Convert to RGB for MediaPipe rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = self.pose.process(rgb_frame) if results.pose_landmarks: # Process landmarks self.analyze_pose(results.pose_landmarks) return results
def calculate_angle(self, a, b, c): vector1 = np.array([a[0] - b[0], a[1] - b[1], a[2] - b[2]]) vector2 = np.array([c[0] - b[0], c[1] - b[1], c[2] - b[2]]) # Handle edge cases if np.linalg.norm(vector1) == 0 or np.linalg.norm(vector2) == 0: return 0.0 cosine_angle = np.dot(vector1, vector2) / ( np.linalg.norm(vector1) * np.linalg.norm(vector2) ) return np.degrees(np.arccos(np.clip(cosine_angle, -1.0, 1.0)))
def calculate_reba_score(self, angles): # Initialize scores neck_score = self._get_neck_score(angles['neck']) trunk_score = self._get_trunk_score(angles['trunk']) legs_score = self._get_legs_score(angles['legs']) # Calculate final score return neck_score + trunk_score + legs_score
最佳化幀處理
錯誤處理
def safe_angle_calculation(self, landmarks): try: angles = self.calculate_angles(landmarks) return angles except Exception as e: self.log_error(e) return self.default_angles
我們的實作實現了:
ergovision/ ├── src/ │ ├── analyzer.py │ ├── pose_detector.py │ └── reba_calculator.py ├── tests/ │ └── test_analyzer.py └── README.md
# Planned optimization @numba.jit(nopython=True) def optimized_angle_calculation(self, vectors): # Optimized computation pass
編碼愉快! ?
以上是建構 ErgoVision:開發人員的 AI 安全之旅的詳細內容。更多資訊請關注PHP中文網其他相關文章!