使用FastAPI POST 資料後下載檔案
開發需要接收使用者輸入、處理使用者輸入然後提供檔案下載的Web 應用程式時,能夠適當促進這種交流至關重要。 FastAPI 為建立此類應用程式提供了一個強大的框架,本指南將探討如何在處理 POSTed 資料後有效下載檔案。
實作函數
首先,在 FastAPI 應用程式中定義一個端點處理檔案下載請求。該端點將接收檔案路徑並傳回檔案作為回應。使用 FastAPI FileResponse 類別的範例實作:
<code class="python">from fastapi import FastAPI, FileResponse, Request from fastapi.responses import FileResponse app = FastAPI() @app.post('/download-file') async def download_file(request: Request, user_id: int = Form(...)): file_path = 'path/to/file.mp3' return FileResponse(file_path, media_type='audio/mp3', filename='output.mp3')</code>
在此程式碼中,file_path 變數應替換為需要下載的檔案的實際路徑。 media_type 和 filename 參數指定檔案類型以及下載檔案的名稱。
使用HTML 觸發下載
定義端點後,將HTML 表單合併到您的前端中觸發對/download-file 端點的POST 請求並提供必要的user_id 參數:
<code class="html"><form action="/download-file" method="post"> <input type="text" name="user_id" placeholder="Enter user ID"> <input type="submit" value="Download File"> </form></code>
提交表單時,具有指定user_id 的POST 請求將發送至/download-file 端點,該端點將處理該請求並傳回檔案以供下載。
處理大檔案下載
如果檔案下載的檔案特別大,可以考慮使用FastAPI中的StreamingResponse類別:
<code class="python">from fastapi import FastAPI, Response, StreamingResponse @app.post('/stream-large-file') async def download_large_file(request: Request, user_id: int = Form(...)): file_path = 'path/to/large_file.mp3' async def iter_file(): with open(file_path, 'rb') as f: while chunk := f.read(1024): yield chunk return StreamingResponse(iter_file(), media_type='audio/mp3', filename='output.mp3')</code>
這裡,iter_file函數分塊讀取文件以減少記憶體消耗並促進文件的串流。
結論
按照上述步驟,您可以創建 FastAPI 應用程序,在 POST 操作後無縫處理文件下載。這使您的應用程式能夠提供下載功能,豐富用戶體驗並更輕鬆地存取生成的檔案。
以上是如何使用 FastAPI 發布資料後下載檔案?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)