搜尋
首頁後端開發Python教學如何合併資料框以根據匹配列追加缺失值?

How to merge dataframes to append missing values based on a matching column?

合併資料幀以根據匹配列追加缺失值

在給定的場景中,目標是合併兩個資料幀df1 和df2,基於名稱列。然而,期望的輸出是保留 df1 中的信息並用 NaN 填充 df2 中的缺失值。結果應如下所示:

    Name  Age  Sex
0    Tom   34    M
1   Sara   18  NaN
2    Eva   44    F
3   Jack   27    M
4  Laura   30  NaN

方法1:使用由set_index 建立的系列映射

此方法涉及透過設定名稱列從df2 建立系列作為索引。然後,使用map()方法匹配並填充df1中的Sex值。

<code class="python">df1['Sex'] = df1['Name'].map(df2.set_index('Name')['Sex'])

print(df1)</code>

方法2:使用Left Join合併的替代解決方案

An替代方案是使用左連接方法合併 df1 和 df2。這可確保保留 df1 中的所有行,並使用 NaN 填入 df2 中的缺失值。

<code class="python">df = df1.merge(df2[['Name', 'Sex']], on='Name', how='left')

print(df)</code>

方法3:使用左連接合併進行多列映射

如果需要合併多列(例如名稱和年份、代碼),請使用左連接合併,並指定所需的列。

<code class="python"># Merge by all columns
df = df1.merge(df2, on=['Year', 'Code'], how='left')

# Merge by specified columns
df = df1.merge(df2[['Year', 'Code', 'Val']], on=['Year', 'Code'], how='left')</code>

處理重複鍵的錯誤

在某些情況下,可能存在重複的 Name 值,導致錯誤。若要解決此問題,請考慮刪除重複項或使用基於字典的對應來確保選擇最後一個符合值。

<code class="python"># Remove duplicates and create a Series for mapping
s = df2.drop_duplicates('Name').set_index('Name')['Val']
df1['New'] = df1['Name'].map(s)</code>

透過使用這些方法中的任何一種,您可以有效地合併資料幀,保留來自主資料幀的資訊資料框並用 NaN 填充缺失值。

以上是如何合併資料框以根據匹配列追加缺失值?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

陣列的同質性質如何影響性能?陣列的同質性質如何影響性能?Apr 25, 2025 am 12:13 AM

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

編寫可執行python腳本的最佳實踐是什麼?編寫可執行python腳本的最佳實踐是什麼?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器