搜尋
首頁後端開發Python教學如何使用 Apache Spark 對使用 OCR 從圖像中提取的文字進行高效的字串匹配和驗證?

 How can Apache Spark be used for efficient string matching and verification of text extracted from images using OCR?

Apache Spark 中用於提取文字驗證的高效字串匹配

光學字元辨識 (OCR) 工具在從影像中擷取文字時經常會出現錯誤。為了有效地將這些提取的文本與參考資料集進行匹配,Spark 中需要一種高效的演算法。

鑑於 OCR 提取中面臨的挑戰,例如字元替換、表情符號遺漏和空白刪除,一種綜合方法是需要。考慮到 Spark 的優勢,可以利用機器學習轉換器的組合來實現高效的解決方案。

管道方法

可以建構管道來執行以下步驟:

  • 標記化:使用RegexTokenizer,將RegexTokenizer,將RegexToken輸入文字分割成最小長度的標記,考慮「I」和「|」等字元替換。
  • N-Grams:NGram 擷取 n 元語法序列以捕捉潛在的符號遺漏。
  • 向量化:為了促進高效的相似性測量,HashingTF 或 CountVectorizer 將 n 轉換為 n -gram 轉換為數值向量。
  • 局部敏感雜湊 (LSH):為了近似向量之間的餘弦相似度,MinHashLSH 利用局部敏感雜湊。

範例實現

<code class="scala">import org.apache.spark.ml.feature.{RegexTokenizer, NGram, HashingTF, MinHashLSH, MinHashLSHModel}

// Input text
val query = Seq("Hello there 7l | real|y like Spark!").toDF("text")

// Reference data
val db = Seq(
  "Hello there ?! I really like Spark ❤️!", 
  "Can anyone suggest an efficient algorithm"
).toDF("text")

// Create pipeline
val pipeline = new Pipeline().setStages(Array(
  new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens"),
  new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams"),
  new HashingTF().setInputCol("ngrams").setOutputCol("vectors"),
  new MinHashLSH().setInputCol("vectors").setOutputCol("lsh")
))

// Fit on reference data
val model = pipeline.fit(db)

// Transform both input text and reference data
val db_hashed = model.transform(db)
val query_hashed = model.transform(query)

// Approximate similarity join
model.stages.last.asInstanceOf[MinHashLSHModel]
  .approxSimilarityJoin(db_hashed, query_hashed, 0.75).show</code>

這種方法有效地應對了OCR 文本提取的挑戰,並提供了一種將提取的文本與Spark中的大型資料集進行匹配的有效方法。

以上是如何使用 Apache Spark 對使用 OCR 從圖像中提取的文字進行高效的字串匹配和驗證?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python和時間:充分利用您的學習時間Python和時間:充分利用您的學習時間Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。