搜尋
首頁後端開發Python教學我嘗試過花崗岩。

I tried out Granite .

花崗岩3.0

Granite 3.0 是一個開源、輕量級的生成語言模型系列,專為一系列企業級任務而設計。它原生支援多語言功能、編碼、推理和工具使用,適合企業環境。

我測試了運行這個模型,看看它可以處理哪些任務。

環境設定

我在 Google Colab 中設定了 Granite 3.0 環境,並使用以下指令安裝了必要的函式庫:

!pip install torch torchvision torchaudio
!pip install accelerate
!pip install -U transformers

執行

我測試了Granite 3.0的2B和8B型號的性能。

2B型號

我運行了 2B 模型。這是 2B 模型的程式碼範例:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
output = tokenizer.batch_decode(output)
print(output[0])

輸出

userPlease list one IBM Research laboratory located in the United States. You should only output its name and location.
assistant1. IBM Research - Austin, Texas

8B型號

將2b替換為8b即可使用8B模型。以下是 8B 模型的沒有角色和使用者輸入欄位的程式碼範例:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, add_special_tokens=False, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

輸出

1. IBM Almaden Research Center - San Jose, California

函數呼叫

我探索了函數呼叫功能,並使用虛擬函數對其進行了測試。這裡,get_current_weather 被定義為傳回模擬天氣資料。

虛擬函數

import json

def get_current_weather(location: str) -> dict:
    """
    Retrieves current weather information for the specified location (default: San Francisco).
    Args:
        location (str): Name of the city to retrieve weather data for.
    Returns:
        dict: Dictionary containing weather information (temperature, description, humidity).
    """
    print(f"Getting current weather for {location}")

    try:
        weather_description = "sample"
        temperature = "20.0"
        humidity = "80.0"

        return {
            "description": weather_description,
            "temperature": temperature,
            "humidity": humidity
        }
    except Exception as e:
        print(f"Error fetching weather data: {e}")
        return {"weather": "NA"}

即時創作

我建立了一個呼叫函數的提示:

functions = [
    {
        "name": "get_current_weather",
        "description": "Get the current weather",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and country code, e.g. San Francisco, US",
                }
            },
            "required": ["location"],
        },
    },
]
query = "What's the weather like in Boston?"
payload = {
    "functions_str": [json.dumps(x) for x in functions]
}
chat = [
    {"role":"system","content": f"You are a helpful assistant with access to the following function calls. Your task is to produce a sequence of function calls necessary to generate response to the user utterance. Use the following function calls as required.{payload}"},
    {"role": "user", "content": query }
]

響應生成

使用以下程式碼,我產生了一個回應:

instruction_1 = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(instruction_1, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=1024)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

輸出

{'name': 'get_current_weather', 'arguments': {'location': 'Boston'}}

這證實了模型能夠根據指定城市產生正確的函數呼叫。

增強互動流程的格式規範

Granite 3.0 允許格式規格以促進結構化格式的回應。本節說明如何使用 [UTTERANCE] 進行回應,並使用 [THINK] 進行內心想法。

另一方面,由於函數呼叫以純文字形式輸出,因此可能需要實作單獨的機制來區分函數呼叫和常規文字回應。

指定輸出格式

以下是指導 AI 輸出的範例提示:

prompt = """You are a conversational AI assistant that deepens interactions by alternating between responses and inner thoughts.
<constraints>
* Record spoken responses after the [UTTERANCE] tag and inner thoughts after the [THINK] tag.
* Use [UTTERANCE] as a start marker to begin outputting an utterance.
* After [THINK], describe your internal reasoning or strategy for the next response. This may include insights on the user's reaction, adjustments to improve interaction, or further goals to deepen the conversation.
* Important: **Use [UTTERANCE] and [THINK] as a start signal without needing a closing tag.**
</constraints>

Follow these instructions, alternating between [UTTERANCE] and [THINK] formats for responses.
<output example>
example1:
  [UTTERANCE]Hello! How can I assist you today?[THINK]I’ll start with a neutral tone to understand their needs. Preparing to offer specific suggestions based on their response.[UTTERANCE]Thank you! In that case, I have a few methods I can suggest![THINK]Since I now know what they’re looking for, I'll move on to specific suggestions, maintaining a friendly and approachable tone.
...
</output>example>

Please respond to the following user_input.
<user_input>
Hello! What can you do?
</user_input>
"""

執行程式碼範例

產生回應的程式碼:

chat = [
    { "role": "user", "content": prompt },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=1024)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

範例輸出

輸出如下:

[UTTERANCE]Hello! I'm here to provide information, answer questions, and assist with various tasks. I can help with a wide range of topics, from general knowledge to specific queries. How can I assist you today?
[THINK]I've introduced my capabilities and offered assistance, setting the stage for the user to share their needs or ask questions.

[UTTERANCE] 和 [THINK] 標籤已成功使用,允許有效的回應格式。

根據提示的不同,輸出中有時可能會出現結束標籤(例如[/UTTERANCE]或[/THINK]),但總的來說,一般都可以成功指定輸出格式。

串流程式碼範例

讓我們看看如何輸出流響應。

以下程式碼使用 asyncio 和線程庫來非同步傳輸來自 Granite 3.0 的回應。

!pip install torch torchvision torchaudio
!pip install accelerate
!pip install -U transformers

範例輸出

執行上述程式碼將產生以下格式的非同步回應:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
output = tokenizer.batch_decode(output)
print(output[0])

此範例示範了成功的串流。每個token都是非同步生成並順序顯示,讓使用者可以即時查看生成過程。

概括

Granite 3.0 即使使用 8B 機型也能提供相當強的反應。函數呼叫和格式規範功能也運作良好,顯示其具有廣泛的應用潛力。

以上是我嘗試過花崗岩。的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的主要目的:靈活性和易用性Python的主要目的:靈活性和易用性Apr 17, 2025 am 12:14 AM

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python:多功能編程的力量Python:多功能編程的力量Apr 17, 2025 am 12:09 AM

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

每天2小時學習Python:實用指南每天2小時學習Python:實用指南Apr 17, 2025 am 12:05 AM

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。

Python與C:開發人員的利弊Python與C:開發人員的利弊Apr 17, 2025 am 12:04 AM

Python適合快速開發和數據處理,而C 適合高性能和底層控制。 1)Python易用,語法簡潔,適用於數據科學和Web開發。 2)C 性能高,控制精確,常用於遊戲和系統編程。

Python:時間投入和學習步伐Python:時間投入和學習步伐Apr 17, 2025 am 12:03 AM

學習Python所需時間因人而異,主要受之前的編程經驗、學習動機、學習資源和方法及學習節奏的影響。設定現實的學習目標並通過實踐項目學習效果最佳。

Python:自動化,腳本和任務管理Python:自動化,腳本和任務管理Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python和時間:充分利用您的學習時間Python和時間:充分利用您的學習時間Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器