如何高效檢查Numpy 數組是否匹配行
要確定Numpy 數組是否包含特定行,終止操作至關重要一旦找到匹配,終止操作就避免不必要的迭代。
可能的解決方案
- 使用 .tolist(): 轉換數組到 Python 列表並使用“in”運算符。如果匹配行位於數組開頭附近,此方法特別有效。
- 使用視圖: 建立陣列的視圖,從而能夠與目標行進行逐行比較。
- 迭代 Numpy 列表: 產生數組元素,根據目標行測試每一行。然而,這種方法相對較慢。
- 利用 numpy 邏輯函數:應用 np.equal() 執行逐元素比較,然後使用 .all(1).any( ) 方法來判斷是否有任何行與目標相符。
效能比較
在不同大小的陣列上測試這些方法表明 numpy 程式在搜尋方面始終表現出色速度。所花費的時間與是否找到或錯過匹配項無關。
例如,numpy「view」方法在大約0.01 秒內搜尋300,000 x 3 元素數組,無論目標行位於何處或
相比之下,Python 的「in」運算符對於早期匹配(例如0.003 秒)會明顯更快,而生成器技術對於詳盡搜尋則明顯較慢(例如6.47 秒)。
結論
為了在Numpy 數組中進行高效的行匹配,建議將np.equal() 與.all(1).any() 結合使用,因為它無論搜尋結果如何,都能提供一致的效能。
以上是如何在 Numpy 數組中高效搜尋匹配行?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

WebStorm Mac版
好用的JavaScript開發工具

Dreamweaver Mac版
視覺化網頁開發工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1
好用且免費的程式碼編輯器