Python 中的遞歸:理解指南
用於對整數列表求和的遞歸函數
讓我們假設我們需要創建一個名為的遞歸函數“listSum”計算列表中所有整數的總和。目標是在不使用任何內建函數的情況下完成此操作。首先,我們應該考慮如何用函數本身來表示函數的結果。
在這種情況下,我們可以透過將第一個數字與呼叫相同函數的結果相加來獲得結果清單中的其餘元素。遞歸地,這可以表示為:
listSum([1, 3, 4, 5, 6]) = 1 + listSum([3, 4, 5, 6]) = 1 + (3 + listSum([4, 5, 6])) = 1 + (3 + (4 + listSum([5, 6]))) = 1 + (3 + (4 + (5 + listSum([6])))) = 1 + (3 + (4 + (5 + (6 + listSum([])))))
遞歸的基本情況是當列表變空時,一個事件需要結果為 0。在 Python 程式碼中實作此方法:
<code class="python">def listSum(ls): if not ls: return 0 return ls[0] + listSum(ls[1:])</code>
尾呼叫遞歸
先前的實作依賴先前函數呼叫的值來計算實際結果。這可以使用尾調用遞歸來改進:
<code class="python">def listSum(ls, result): if not ls: return result return listSum(ls[1:], result + ls[0])</code>
透過引入額外的參數結果,我們在其中累積總和,並在滿足基本條件時返回它。
傳遞索引
為了避免建立多個中間列表,我們可以傳遞要處理的項目的索引:
<code class="python">def listSum(ls, index, result): if index == len(ls): return result return listSum(ls, index + 1, result + ls[index])</code>
基本條件檢查索引是否已達到列表的長度。
內部函數版本
為了簡化參數傳遞,我們可以使用內部函數:
<code class="python">def listSum(ls): def recursion(index, result): if index == len(ls): return result return recursion(index + 1, result + ls[index]) return recursion(0, 0)</code>
內部函數遞歸接受索引和結果參數,listSum 傳回使用初始值呼叫內部函數的結果。
預設參數版本
使用預設參數是進一步的簡化:
<code class="python">def listSum(ls, index=0, result=0): if index == len(ls): return result return listSum(ls, index + 1, result + ls[index])</code>
預設值分配給索引和如果呼叫者未明確指定,則結果。
遞歸冪問題
考慮計算冪(底數,指數)的問題,它會傳回底數的指數次方的值。遞歸地,我們可以定義解:
power(2, 5) = 2 * power(2, 4) = 2 * (2 * power(2, 3)) = 2 * (2 * (2 * power(2, 2))) = 2 * (2 * (2 * (2 * power(2, 1))))
底數條件是指數變成1 或更小時,此時結果就是底數本身:
= 2 * (2 * (2 * (2 * 2))) = 2 * (2 * (2 * 4)) = 2 * (2 * 8) = 2 * 16 = 32
Python 中的實現:
<code class="python">def power(base, exponent): if exponent <p>使用尾呼叫最佳化版本的預設參數:</p> <pre class="brush:php;toolbar:false"><code class="python">def power(base, exponent, result=1): if exponent </code>
以上是如何在Python中實現尾呼叫遞歸來高效求和?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python 提供多種從互聯網下載文件的方法,可以使用 urllib 包或 requests 庫通過 HTTP 進行下載。本教程將介紹如何使用這些庫通過 Python 從 URL 下載文件。 requests 庫 requests 是 Python 中最流行的庫之一。它允許發送 HTTP/1.1 請求,無需手動將查詢字符串添加到 URL 或對 POST 數據進行表單編碼。 requests 庫可以執行許多功能,包括: 添加表單數據 添加多部分文件 訪問 Python 的響應數據 發出請求 首

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

PDF 文件因其跨平台兼容性而廣受歡迎,內容和佈局在不同操作系統、閱讀設備和軟件上保持一致。然而,與 Python 處理純文本文件不同,PDF 文件是二進製文件,結構更複雜,包含字體、顏色和圖像等元素。 幸運的是,借助 Python 的外部模塊,處理 PDF 文件並非難事。本文將使用 PyPDF2 模塊演示如何打開 PDF 文件、打印頁面和提取文本。關於 PDF 文件的創建和編輯,請參考我的另一篇教程。 準備工作 核心在於使用外部模塊 PyPDF2。首先,使用 pip 安裝它: pip 是 P

本教程演示瞭如何利用Redis緩存以提高Python應用程序的性能,特別是在Django框架內。 我們將介紹REDIS安裝,Django配置和性能比較,以突出顯示BENE

自然語言處理(NLP)是人類語言的自動或半自動處理。 NLP與語言學密切相關,並與認知科學,心理學,生理學和數學的研究有聯繫。在計算機科學

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver CS6
視覺化網頁開發工具

禪工作室 13.0.1
強大的PHP整合開發環境

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Atom編輯器mac版下載
最受歡迎的的開源編輯器