使用布林索引對 Pandas 資料幀和系列進行高效過濾
在資料分析場景中,應用多個過濾器來縮小結果範圍通常至關重要。本文旨在提出一種有效的方法來連結 Pandas 資料物件上的多個比較操作。
挑戰
目標是處理關係運算符字典並將它們附加地應用於給定的 Pandas Series 或 DataFrame,產生過濾後的資料集。此操作需要最大限度地減少不必要的資料複製,尤其是在處理大型資料集時。
解決方案:布林索引
Pandas 提供了一種使用布林索引過濾資料的高效機制。布林索引涉及建立邏輯條件,然後使用這些條件對資料建立索引。考慮以下範例:
<code class="python">df.loc[df['col1'] >= 1, 'col1']</code>
這行程式碼選擇 DataFrame df 中「col1」欄位中的值大於或等於 1 的所有行。結果是一個新的 Series 對象,其中包含過濾後的值。
要套用多個篩選器,我們可以使用邏輯運算子(如 &)來組合佈林條件。 (和)和| (或)。例如:
<code class="python">df[(df['col1'] >= 1) & (df['col1'] <p>此運算過濾 'col1' 大於或等於 1 且小於或等於 1 的行。 </p> <h3 id="輔助函數">輔助函數</h3> <p>為了簡化應用多個過濾器的過程,我們可以建立輔助函數:</p> <pre class="brush:php;toolbar:false"><code class="python">def b(x, col, op, n): return op(x[col], n) def f(x, *b): return x[(np.logical_and(*b))]</code>
b 函數為給定列和運算符建立布爾條件,而f 將多個布林條件套用於DataFrame 或Series。
使用範例
要使用這些函數,我們可以提供過濾條件的字典:
<code class="python">filters = {'>=': [1], '<pre class="brush:php;toolbar:false"><code class="python">b1 = b(df, 'col1', ge, 1) b2 = b(df, 'col1', le, 1) filtered_df = f(df, b1, b2)</code>
此程式碼將過濾器應用於「col1」
增強功能
Pandas 0.13 引入了查詢方法,它提供了一種使用字串表達式應用過濾器的便捷方法。對於有效的列標識符,可以使用以下程式碼:
<code class="python">df.query('col1 <p>此行使用更簡潔的語法實現與前面的範例相同的過濾。 </p> <p>透過利用布林索引和輔助函數,我們可以有效地將多個過濾器應用於 Pandas 資料幀和系列。這種方法可以最大限度地減少資料複製並提高效能,特別是在處理大型資料集時。 </p></code>
以上是如何使用布林索引有效過濾 Pandas 資料物件?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

禪工作室 13.0.1
強大的PHP整合開發環境