搜尋
首頁後端開發Python教學如何在 Python 中產生浮點範圍?

How to Generate a Floating-Point Range in Python?

Python 中的浮點範圍

Python 內建的 range() 函數可讓您產生整數序列。然而,在處理浮點數時,直接的 range() 是不夠的。

問題:非整數步長

使用range( ) 使用浮點作為步長參數會導致錯誤:

<code class="python">>>> range(0.5, 5, 0.5)
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    range(0.5, 5, 0.5)
ValueError: range() step argument must not be zero</module></pyshell></code>

這是步長參數會導致錯誤:

這是因為range() 要求步長為整數。

解決方案:基於除法的列表推導式

<code class="python">[x / 10.0 for x in range(5, 50, 15)]</code>

創建浮點範圍的一種方法是透過列表推導式與除法結合:

此推導式將範圍中的每個元素除以(5 , 50, 15) 乘以10.0 來產生浮點序列。

替代方案:Map 和Lambda

<code class="python">map(lambda x: x / 10.0, range(5, 50, 15))</code>

另一種方法涉及使用map() 函數和lambda表達式:

這裡, lambda 表達式透過將範圍內的每個數字除以10.0 將其轉換為浮點數。 map() 將此函數應用於範圍內的所有元素,從而產生浮點序列。

以上是如何在 Python 中產生浮點範圍?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
列表和陣列之間的選擇如何影響涉及大型數據集的Python應用程序的整體性能?列表和陣列之間的選擇如何影響涉及大型數據集的Python應用程序的整體性能?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

說明如何將內存分配給Python中的列表與數組。說明如何將內存分配給Python中的列表與數組。May 03, 2025 am 12:10 AM

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

您如何在Python數組中指定元素的數據類型?您如何在Python數組中指定元素的數據類型?May 03, 2025 am 12:06 AM

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

什麼是Numpy,為什麼對於Python中的數值計算很重要?什麼是Numpy,為什麼對於Python中的數值計算很重要?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

討論'連續內存分配”的概念及其對數組的重要性。討論'連續內存分配”的概念及其對數組的重要性。May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

您如何切成python列表?您如何切成python列表?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

在Numpy陣列上可以執行哪些常見操作?在Numpy陣列上可以執行哪些常見操作?May 02, 2025 am 12:09 AM

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,減法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Python的數據分析中如何使用陣列?Python的數據分析中如何使用陣列?May 02, 2025 am 12:09 AM

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),