為什麼 Matplotlib 這麼慢?
在評估 Python 繪圖庫時,考慮效能很重要。 Matplotlib 是一個廣泛使用的函式庫,它看起來可能很緩慢,引發了加快速度或探索替代選項的問題。讓我們深入研究這個問題並探索可能的解決方案。
提供的範例展示了具有多個子圖和資料更新的圖表。使用 Matplotlib,此過程涉及重繪所有內容,包括軸邊界和刻度標籤,導致效能下降。
了解瓶頸
導致緩慢的兩個關鍵因素:
使用 Blitting 進行最佳化
解決這些瓶頸,考慮使用位塊傳送。 Blitting 涉及僅更新圖形的特定部分,從而減少渲染時間。然而,為了高效實現,需要特定於後端的程式碼,這可能需要在 GUI 工具包中嵌入 Matplotlib 繪圖。
GUI 中性位圖傳輸
GUI 中性位圖傳輸此技術可在不依賴後端的情況下提供合理的效能:
範例實作:
<code class="python">import matplotlib.pyplot as plt import numpy as np x = np.arange(0, 2*np.pi, 0.1) y = np.sin(x) fig, axes = plt.subplots(nrows=6) styles = ['r-', 'g-', 'y-', 'm-', 'k-', 'c-'] def plot(ax, style): return ax.plot(x, y, style, animated=True)[0] lines = [plot(ax, style) for ax, style in zip(axes, styles)] # Capture Background backgrounds = [fig.canvas.copy_from_bbox(ax.bbox) for ax in axes] for i in xrange(1, 2000): for j, (line, ax, background) in enumerate(zip(lines, axes, backgrounds), start=1): fig.canvas.restore_region(background) line.set_ydata(np.sin(j*x + i/10.0)) ax.draw_artist(line) fig.canvas.blit(ax.bbox)</code>
動畫模組
最近的Matplotlib 版本包含一個動畫模組,它簡化了blitting:
<code class="python">import matplotlib.pyplot as plt import matplotlib.animation as animation def animate(i): for j, line in enumerate(lines, start=1): line.set_ydata(np.sin(j*x + i/10.0)) ani = animation.FuncAnimation(fig, animate, xrange(1, 200), interval=0, blit=True)</code>
以上是如何加速 Matplotlib 繪圖以提高效能?的詳細內容。更多資訊請關注PHP中文網其他相關文章!