Normalized Columns: Keeping Values in Range
When it comes to data analysis, values often reside within a range, making the interpretation a bit difficult. Normalization comes to the rescue by transforming the values into a consistent scale between 0 and 1.
Let's consider an example dataframe:
df: A B C 1000 10 0.5 765 5 0.35 800 7 0.09
Solution 1: Mean Normalization
Using Pandas, we can normalize columns by calculating the deviation from the mean and standardizing it with the standard deviation:
normalized_df = (df - df.mean()) / df.std()
This gives us:
normalized_df: A B C 1.000000 1.000000 1.000000 0.765592 0.500000 0.700000 0.800457 0.700000 0.180000
Solution 2: Min-Max Normalization
Alternatively, we can perform min-max normalization, which scales values based on the data's minimum and maximum:
normalized_df = (df - df.min()) / (df.max() - df.min())
Resulting in:
normalized_df: A B C 1.000000 1.000000 1.000000 0.765592 0.500000 0.700000 0.800457 0.700000 0.180000
Note that Pandas automatically applies normalization column-wise, making the process efficient and straightforward.
以上是如何使用標準化將資料值保持在範圍內?的詳細內容。更多資訊請關注PHP中文網其他相關文章!