Machine Readable Zone (MRZ) is a crucial feature adopted in modern passports, visas, and ID cards. It contains essential information about the document holder, such as their name, gender, country code, and document number. MRZ recognition plays a key role in border control, airport security, and hotel check-in processes. In this tutorial, we will demonstrate how to leverage the Dynamsoft Capture Vision SDK to implement MRZ recognition across Windows, Linux, and macOS platforms. This guide will provide a step-by-step approach to harness the SDK’s powerful features, making cross-platform MRZ detection seamless and efficient.
Python MRZ Recognition Demo on macOS
Prerequisites
Dynamsoft Capture Vision Trial License: Obtain a 30-Day trial license key for the Dynamsoft Capture Vision SDK.
-
Python Packages: Install the required Python packages using the following commands:
pip install dynamsoft-capture-vision-bundle opencv-python
What are these packages for?
- dynamsoft-capture-vision-bundle is the Dynamsoft Capture Vision SDK for Python.
- opencv-python captures camera frames and displays processed image results.
Getting Started with the Dynamsoft Python Capture Vision Example
The official MRZ scanner example demonstrates how to create a simple Python-based MRZ reader using the Dynamsoft Capture Vision SDK in a short time.
Let's take a look at the source code and analyze its functionality:
import sys from dynamsoft_capture_vision_bundle import * import os class MRZResult: def __init__(self, item: ParsedResultItem): self.doc_type = item.get_code_type() self.raw_text=[] self.doc_id = None self.surname = None self.given_name = None self.nationality = None self.issuer = None self.gender = None self.date_of_birth = None self.date_of_expiry = None if self.doc_type == "MRTD_TD3_PASSPORT": if item.get_field_value("passportNumber") != None and item.get_field_validation_status("passportNumber") != EnumValidationStatus.VS_FAILED: self.doc_id = item.get_field_value("passportNumber") elif item.get_field_value("documentNumber") != None and item.get_field_validation_status("documentNumber") != EnumValidationStatus.VS_FAILED: self.doc_id = item.get_field_value("documentNumber") line = item.get_field_value("line1") if line is not None: if item.get_field_validation_status("line1") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) line = item.get_field_value("line2") if line is not None: if item.get_field_validation_status("line2") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) line = item.get_field_value("line3") if line is not None: if item.get_field_validation_status("line3") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) if item.get_field_value("nationality") != None and item.get_field_validation_status("nationality") != EnumValidationStatus.VS_FAILED: self.nationality = item.get_field_value("nationality") if item.get_field_value("issuingState") != None and item.get_field_validation_status("issuingState") != EnumValidationStatus.VS_FAILED: self.issuer = item.get_field_value("issuingState") if item.get_field_value("dateOfBirth") != None and item.get_field_validation_status("dateOfBirth") != EnumValidationStatus.VS_FAILED: self.date_of_birth = item.get_field_value("dateOfBirth") if item.get_field_value("dateOfExpiry") != None and item.get_field_validation_status("dateOfExpiry") != EnumValidationStatus.VS_FAILED: self.date_of_expiry = item.get_field_value("dateOfExpiry") if item.get_field_value("sex") != None and item.get_field_validation_status("sex") != EnumValidationStatus.VS_FAILED: self.gender = item.get_field_value("sex") if item.get_field_value("primaryIdentifier") != None and item.get_field_validation_status("primaryIdentifier") != EnumValidationStatus.VS_FAILED: self.surname = item.get_field_value("primaryIdentifier") if item.get_field_value("secondaryIdentifier") != None and item.get_field_validation_status("secondaryIdentifier") != EnumValidationStatus.VS_FAILED: self.given_name = item.get_field_value("secondaryIdentifier") def to_string(self): msg = (f"Raw Text:\n") for index, line in enumerate(self.raw_text): msg += (f"\tLine {index + 1}: {line}\n") msg+=(f"Parsed Information:\n" f"\tDocumentType: {self.doc_type or ''}\n" f"\tDocumentID: {self.doc_id or ''}\n" f"\tSurname: {self.surname or ''}\n" f"\tGivenName: {self.given_name or ''}\n" f"\tNationality: {self.nationality or ''}\n" f"\tIssuingCountryorOrganization: {self.issuer or ''}\n" f"\tGender: {self.gender or ''}\n" f"\tDateofBirth(YYMMDD): {self.date_of_birth or ''}\n" f"\tExpirationDate(YYMMDD): {self.date_of_expiry or ''}\n") return msg def print_results(result: ParsedResult) -> None: tag = result.get_original_image_tag() if isinstance(tag, FileImageTag): print("File:", tag.get_file_path()) if result.get_error_code() != EnumErrorCode.EC_OK: print("Error:", result.get_error_string()) else: items = result.get_items() print("Parsed", len(items), "MRZ Zones.") for item in items: mrz_result = MRZResult(item) print(mrz_result.to_string()) if __name__ == '__main__': print("**********************************************************") print("Welcome to Dynamsoft Capture Vision - MRZ Sample") print("**********************************************************") error_code, error_message = LicenseManager.init_license("LICENSE-KEY") if error_code != EnumErrorCode.EC_OK and error_code != EnumErrorCode.EC_LICENSE_CACHE_USED: print("License initialization failed: ErrorCode:", error_code, ", ErrorString:", error_message) else: cvr_instance = CaptureVisionRouter() while (True): image_path = input( ">> Input your image full path:\n" ">> 'Enter' for sample image or 'Q'/'q' to quit\n" ).strip('\'"') if image_path.lower() == "q": sys.exit(0) if image_path == "": image_path = "../Images/passport-sample.jpg" if not os.path.exists(image_path): print("The image path does not exist.") continue result = cvr_instance.capture(image_path, "ReadPassportAndId") if result.get_error_code() != EnumErrorCode.EC_OK: print("Error:", result.get_error_code(), result.get_error_string()) else: parsed_result = result.get_parsed_result() if parsed_result is None or len(parsed_result.get_items()) == 0: print("No parsed results.") else: print_results(parsed_result) input("Press Enter to quit...")
Explanation
- The LicenseManager.init_license method initializes the Dynamsoft Capture Vision SDK with a valid license key.
- The CaptureVisionRouter class manages image processing tasks and coordinates various image processing modules. Its capture method processes the input image and returns the result.
- The ReadPassportAndId is a built-in template specifying the processing mode. The SDK supports various processing modes, such as MRZ recognition, document edge detection, and barcode detection.
- The get_parsed_result method retrieves the MRZ recognition result as a dictionary. The MRZResult class extracts and wraps the relevant MRZ information. Since this class can be reused across different applications, it is recommended to move it to a utils.py file.
In the next section, we will use OpenCV to visualize the MRZ recognition results and display the detected MRZ zones on the passport image.
Visualizing Machine Readable Zone Location in a Passport Image
In the code above, result is an instance of the CapturedResult class. Calling its get_recognized_text_lines_result() method retrieves a list of TextLineResultItem objects. Each TextLineResultItem object contains the coordinates of the detected text line. Use the following code snippet to extract the coordinates and draw contours on the passport image:
cv_image = cv2.imread(image_path) line_result = result.get_recognized_text_lines_result() items = line_result.get_items() for item in items: location = item.get_location() x1 = location.points[0].x y1 = location.points[0].y x2 = location.points[1].x y2 = location.points[1].y x3 = location.points[2].x y3 = location.points[2].y x4 = location.points[3].x y4 = location.points[3].y del location cv2.drawContours( cv_image, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2) cv2.imshow( "Original Image with Detected MRZ Zone", cv_image) cv2.waitKey(0) cv2.destroyAllWindows()
Scanning and Recognizing MRZ in Real-time via Webcam
Scanning and recognizing MRZ in real-time via webcam requires capturing a continuous image stream. We can use the OpenCV library to capture frames from the webcam and process them with the Dynamsoft Capture Vision SDK. The following code snippet demonstrates how to implement real-time MRZ recognition using a webcam:
from dynamsoft_capture_vision_bundle import * import cv2 import numpy as np import queue from utils import * class FrameFetcher(ImageSourceAdapter): def has_next_image_to_fetch(self) -> bool: return True def add_frame(self, imageData): self.add_image_to_buffer(imageData) class MyCapturedResultReceiver(CapturedResultReceiver): def __init__(self, result_queue): super().__init__() self.result_queue = result_queue def on_captured_result_received(self, captured_result): self.result_queue.put(captured_result) if __name__ == '__main__': errorCode, errorMsg = LicenseManager.init_license( "LICENSE-KEY") if errorCode != EnumErrorCode.EC_OK and errorCode != EnumErrorCode.EC_LICENSE_CACHE_USED: print("License initialization failed: ErrorCode:", errorCode, ", ErrorString:", errorMsg) else: vc = cv2.VideoCapture(0) if not vc.isOpened(): print("Error: Camera is not opened!") exit(1) cvr = CaptureVisionRouter() fetcher = FrameFetcher() cvr.set_input(fetcher) # Create a thread-safe queue to store captured items result_queue = queue.Queue() receiver = MyCapturedResultReceiver(result_queue) cvr.add_result_receiver(receiver) errorCode, errorMsg = cvr.start_capturing("ReadPassportAndId") if errorCode != EnumErrorCode.EC_OK: print("error:", errorMsg) while True: ret, frame = vc.read() if not ret: print("Error: Cannot read frame!") break fetcher.add_frame(convertMat2ImageData(frame)) if not result_queue.empty(): captured_result = result_queue.get_nowait() items = captured_result.get_items() for item in items: if item.get_type() == EnumCapturedResultItemType.CRIT_TEXT_LINE: text = item.get_text() line_results = text.split('\n') location = item.get_location() x1 = location.points[0].x y1 = location.points[0].y x2 = location.points[1].x y2 = location.points[1].y x3 = location.points[2].x y3 = location.points[2].y x4 = location.points[3].x y4 = location.points[3].y cv2.drawContours( frame, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2) delta = y3 - y1 for line_result in line_results: cv2.putText( frame, line_result, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA) y1 += delta del location elif item.get_type() == EnumCapturedResultItemType.CRIT_PARSED_RESULT: mrz_result = MRZResult(item) print(mrz_result.to_string()) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imshow('frame', frame) cvr.stop_capturing() vc.release() cv2.destroyAllWindows()
Explanation
- The FrameFetcher class implements the ImageSourceAdapter interface to feed frame data into the built-in buffer.
- The MyCapturedResultReceiver class implements the CapturedResultReceiver interface. The on_captured_result_received method runs on a native C++ worker thread, sending CapturedResult objects to the main thread where they are stored in a thread-safe queue for further use.
- A CapturedResult contains several CapturedResultItem objects. The CRIT_TEXT_LINE type represents recognized text lines, while the CRIT_PARSED_RESULT type represents parsed MRZ data.
Running the Real-time MRZ Recognition Demo on Windows
Source Code
https://github.com/yushulx/python-mrz-scanner-sdk/tree/main/examples/official
以上是如何在Python中實現機器可讀區(MRZ)識別的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Tomergelistsinpython,YouCanusethe操作員,estextMethod,ListComprehension,Oritertools

在Python3中,可以通過多種方法連接兩個列表:1)使用 運算符,適用於小列表,但對大列表效率低;2)使用extend方法,適用於大列表,內存效率高,但會修改原列表;3)使用*運算符,適用於合併多個列表,不修改原列表;4)使用itertools.chain,適用於大數據集,內存效率高。

使用join()方法是Python中從列表連接字符串最有效的方法。 1)使用join()方法高效且易讀。 2)循環使用 運算符對大列表效率低。 3)列表推導式與join()結合適用於需要轉換的場景。 4)reduce()方法適用於其他類型歸約,但對字符串連接效率低。完整句子結束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的關鍵特性包括:1.語法簡潔易懂,適合初學者;2.動態類型系統,提高開發速度;3.豐富的標準庫,支持多種任務;4.強大的社區和生態系統,提供廣泛支持;5.解釋性,適合腳本和快速原型開發;6.多範式支持,適用於各種編程風格。

Python是解釋型語言,但也包含編譯過程。 1)Python代碼先編譯成字節碼。 2)字節碼由Python虛擬機解釋執行。 3)這種混合機制使Python既靈活又高效,但執行速度不如完全編譯型語言。

UseeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.forloopsareIdealForkNownsences,而WhileLeleLeleLeleLeleLoopSituationSituationsItuationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐個偏置,零indexingissues,andnestedloopineflinefficiencies


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

記事本++7.3.1
好用且免費的程式碼編輯器