Introduction
In this article, we will build a web application that scrapes LinkedIn for job postings using Crawlee and Streamlit.
We will create a LinkedIn job scraper in Python using Crawlee for Python to extract the company name, job title, time of posting, and link to the job posting from dynamically received user input through the web application.
Note
One of our community members wrote this blog as a contribution to Crawlee Blog. If you want to contribute blogs like these to Crawlee Blog, please reach out to us on our discord channel.
By the end of this tutorial, you’ll have a fully functional web application that you can use to scrape job postings from LinkedIn.
Let's begin.
Prerequisites
Let's start by creating a new Crawlee for Python project with this command:
pipx run crawlee create linkedin-scraper
Select PlaywrightCrawler in the terminal when Crawlee asks for it.
After installation, Crawlee for Python will create boilerplate code for you. You can change the directory(cd) to the project folder and run this command to install dependencies.
poetry install
We are going to begin editing the files provided to us by Crawlee so we can build our scraper.
Note
Before going ahead if you like reading this blog, we would be really happy if you gave Crawlee for Python a star on GitHub!Star us on GitHub ⭐️
Building the LinkedIn job Scraper in Python with Crawlee
In this section, we will be building the scraper using the Crawlee for Python package. To learn more about Crawlee, check out their documentation.
1. Inspecting the LinkedIn job Search Page
Open LinkedIn in your web browser and sign out from the website (if you already have an account logged in). You should see an interface like this.
Navigate to the jobs section, search for a job and location of your choice, and copy the URL.
You should have something like this:
https://www.linkedin.com/jobs/search?keywords=Backend%20Developer&location=Canada&geoId=101174742&trk=public_jobs_jobs-search-bar_search-submit&position=1&pageNum=0
We're going to focus on the search parameters, which is the part that goes after '?'. The keyword and location parameters are the most important ones for us.
The job title the user supplies will be input to the keyword parameter, while the location the user supplies will go into the location parameter. Lastly, the geoId parameter will be removed while we keep the other parameters constant.
We are going to be making changes to our main.py file. Copy and paste the code below in your main.py file.
from crawlee.playwright_crawler import PlaywrightCrawler from .routes import router import urllib.parse async def main(title: str, location: str, data_name: str) -> None: base_url = "https://www.linkedin.com/jobs/search" # URL encode the parameters params = { "keywords": title, "location": location, "trk": "public_jobs_jobs-search-bar_search-submit", "position": "1", "pageNum": "0" } encoded_params = urlencode(params) # Encode parameters into a query string query_string = '?' + encoded_params # Combine base URL with the encoded query string encoded_url = urljoin(base_url, "") + query_string # Initialize the crawler crawler = PlaywrightCrawler( request_handler=router, ) # Run the crawler with the initial list of URLs await crawler.run([encoded_url]) # Save the data in a CSV file output_file = f"{data_name}.csv" await crawler.export_data(output_file)
Now that we have encoded the URL, the next step for us is to adjust the generated router to handle LinkedIn job postings.
2. Routing your crawler
We will be making use of two handlers for your application:
- Default handler
The default_handler handles the start URL
- Job listing
The job_listing handler extracts the individual job details.
Playwright crawler is going to crawl through the job posting page and extract the links to all job postings on the page.
When you examine the job postings, you will discover that the job posting links are inside an ordered list with a class named jobs-search__results-list. We will then extract the links using the Playwright locator object and add them to the job_listing route for processing.
router = Router[PlaywrightCrawlingContext]() @router.default_handler async def default_handler(context: PlaywrightCrawlingContext) -> None: """Default request handler.""" #select all the links for the job posting on the page hrefs = await context.page.locator('ul.jobs-search__results-list a').evaluate_all("links => links.map(link => link.href)") #add all the links to the job listing route await context.add_requests( [Request.from_url(rec, label='job_listing') for rec in hrefs] )
Now that we have the job listings, the next step is to scrape their details.
We'll extract each job’s title, company's name, time of posting, and the link to the job post. Open your dev tools to extract each element using its CSS selector.
After scraping each of the listings, we'll remove special characters from the text to make it clean and push the data to local storage using the context.push_data function.
@router.handler('job_listing') async def listing_handler(context: PlaywrightCrawlingContext) -> None: """Handler for job listings.""" await context.page.wait_for_load_state('load') job_title = await context.page.locator('div.top-card-layout__entity-info h1.top-card-layout__title').text_content() company_name = await context.page.locator('span.topcard__flavor a').text_content() time_of_posting= await context.page.locator('div.topcard__flavor-row span.posted-time-ago__text').text_content() await context.push_data( { # we are making use of regex to remove special characters for the extracted texts 'title': re.sub(r'[\s\n]+', '', job_title), 'Company name': re.sub(r'[\s\n]+', '', company_name), 'Time of posting': re.sub(r'[\s\n]+', '', time_of_posting), 'url': context.request.loaded_url, } )
3. Creating your application
For this project, we will be using Streamlit for the web application. Before we proceed, we are going to create a new file named app.py in your project directory. In addition, ensure you have Streamlit installed in your global Python environment before proceeding with this section.
import streamlit as st import subprocess # Streamlit form for inputs st.title("LinkedIn Job Scraper") with st.form("scraper_form"): title = st.text_input("Job Title", value="backend developer") location = st.text_input("Job Location", value="newyork") data_name = st.text_input("Output File Name", value="backend_jobs") submit_button = st.form_submit_button("Run Scraper") if submit_button: # Run the scraping script with the form inputs command = f"""poetry run python -m linkedin-scraper --title "{title}" --location "{location}" --data_name "{data_name}" """ with st.spinner("Crawling in progress..."): # Execute the command and display the results result = subprocess.run(command, shell=True, capture_output=True, text=True) st.write("Script Output:") st.text(result.stdout) if result.returncode == 0: st.success(f"Data successfully saved in {data_name}.csv") else: st.error(f"Error: {result.stderr}")
The Streamlit web application takes in the user's input and uses the Python Subprocess package to run the Crawlee scraping script.
4. Testing your app
Before we test the application, we need to make a little modification to the __main__ file in order for it to accommodate the command line arguments.
import asyncio import argparse from .main import main def get_args(): # ArgumentParser object to capture command-line arguments parser = argparse.ArgumentParser(description="Crawl LinkedIn job listings") # Define the arguments parser.add_argument("--title", type=str, required=True, help="Job title") parser.add_argument("--location", type=str, required=True, help="Job location") parser.add_argument("--data_name", type=str, required=True, help="Name for the output CSV file") # Parse the arguments return parser.parse_args() if __name__ == '__main__': args = get_args() # Run the main function with the parsed command-line arguments asyncio.run(main(args.title, args.location, args.data_name))
We will start the Streamlit application by running this code in the terminal:
streamlit run app.py
This is what your application what the application should look like on the browser:
You will get this interface showing you that the scraping has been completed:
To access the scraped data, go over to your project directory and open the CSV file.
You should have something like this as the output of your CSV file.
Conclusion
In this tutorial, we have learned how to build an application that can scrape job posting data from LinkedIn using Crawlee. Have fun building great scraping applications with Crawlee.
You can find the complete working Crawler code here on the GitHub repository..
Follow Crawlee for more content like this.

Crawlee
Thank you!
以上是如何使用 Crawlee 在 Python 中建立 LinkedIn 職位抓取工具的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Dreamweaver Mac版
視覺化網頁開發工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中