為什麼多重處理範例給出AttributeError
在嘗試深入研究多重處理時,有人在改編文件中的介紹性範例時遇到了AttributeError:
<code class="python">from multiprocessing import Pool def f(x): return x*x if __name__ == '__main__': with Pool(5) as p: print(p.map(f, [1, 2, 3]))</code>
錯誤:「AttributeError:無法在上取得屬性'f'>」讓使用者感到困惑。
要解決此問題,重要的是要了解 multiprocessing.Pool 具有獨特的設計功能。如 Python 問題 #25053 所述,在處理匯入模組中未定義的物件時,Pool 有時會出現問題。作為解決方法,您可以在單獨的檔案中定義函數並匯入模組。
以下範例:
defs.py:
<code class="python">def f(x): return x*x</code>
run.py:
<code class="python">from multiprocessing import Pool import defs if __name__ == '__main__': with Pool(5) as p: print(p.map(defs.f, [1, 2, 3]))</code>
run.py:
此修改應該可以解決AttributeError。然而,值得注意的是,由於這個潛在的問題,文件中給出的範例可能並不最適合初學者。以上是為什麼使用內建函數的多重處理範例會導致'AttributeError”?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

PDF 文件因其跨平台兼容性而廣受歡迎,內容和佈局在不同操作系統、閱讀設備和軟件上保持一致。然而,與 Python 處理純文本文件不同,PDF 文件是二進製文件,結構更複雜,包含字體、顏色和圖像等元素。 幸運的是,借助 Python 的外部模塊,處理 PDF 文件並非難事。本文將使用 PyPDF2 模塊演示如何打開 PDF 文件、打印頁面和提取文本。關於 PDF 文件的創建和編輯,請參考我的另一篇教程。 準備工作 核心在於使用外部模塊 PyPDF2。首先,使用 pip 安裝它: pip 是 P

本教程演示瞭如何利用Redis緩存以提高Python應用程序的性能,特別是在Django框架內。 我們將介紹REDIS安裝,Django配置和性能比較,以突出顯示BENE

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

Python是數據科學和處理的最愛,為高性能計算提供了豐富的生態系統。但是,Python中的並行編程提出了獨特的挑戰。本教程探討了這些挑戰,重點是全球解釋

本教程演示了在Python 3中創建自定義管道數據結構,利用類和操作員超載以增強功能。 管道的靈活性在於它能夠將一系列函數應用於數據集的能力,GE


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能