搜尋
首頁後端開發Python教學使用 Python 進行綜合天氣資料分析:溫度、降雨趨勢和視覺化

  • ケニアのさまざまな都市の気象データの分析と予測
    • はじめに
    • データセットの概要
    • 探索的データ分析
    • 主要な気象特徴の視覚化
    • 気象状況分析
    • 都市別降雨量
    • 月平均気温
    • 月間平均降水量
    • 気象変数間の相関関係
    • ケーススタディ: 都市特有の傾向
    • 結論

ケニアのさまざまな都市の気象データの分析と予測


導入

この記事では、Python を使用して天気パターンを分析する方法を説明します。気温傾向の特定から降水量の視覚化まで、このステップバイステップのガイドは、気象分析にデータ サイエンス技術を使用することに興味がある人に最適です。実用的な洞察を得るために、コード、データ操作、視覚化について調査します。

ケニアでは、天気は多くの分野、特に農業、観光、野外活動において重要な役割を果たしています。農家、企業、イベント プランナーは、意思決定を行うために正確な気象情報を必要としています。ただし、気象パターンは地域ごとに大きく異なる可能性があり、現在の予測システムでは常に局所的な洞察が得られるとは限りません。

このプロジェクトの目的は、ケニア全土のさまざまな地域の OpenWeatherMap API と Weather API からリアルタイムの気象データを収集することです。このデータはデータベースに保存され、Python を使用して分析され、次のような洞察が明らかになります。-

  • 気温の傾向
  • 降雨パターン - 湿度と風の状態

このプロジェクトでは、ケニアのさまざまな都市の気象情報を含むデータセットを分析します。データセットには、温度、湿度、気圧、風速、視程、降雨量などの要素を含む 3,000 行を超える気象観測結果が含まれています。これらの洞察を使用して、農業、観光、さらには管理などの天候に敏感なセクターにおける意思決定を支援できる、正確な地域固有の天気予報を提供することを目指しています。

データセットの概要

データセットはいくつかの列を使用して構造化されました:

  • Datetime - 天気がいつ記録されたかを示すタイムスタンプ。
  • 都市と国 - 気象観測の場所。
  • 緯度と経度 - 場所の地理座標。
  • 温度 (摂氏) - 記録された温度。
  • 湿度 (%) - 空気中の湿度の割合。
  • 圧力 (hPa) - ヘクトパスカル単位の大気圧。
  • 風速 (m/s) - その時の風速。
  • 雨 (mm) - ミリメートル単位で測定された降雨量。
  • 雲 (%) - 雲の範囲の割合。
  • 気象条件と天気の説明 - 天気の一般的および詳細な説明 (例: 「雲」、「散在雲」)。

これは、データベース内でデータがどのように構造化されているかです。
Comprehensive Weather Data Analysis Using Python: Temperature, Rainfall Trends, and Visualizations


探索的データ分析

分析の最初のステップには、データの基本的な調査が含まれていました。
_ データ ディメンション - データセットには 3,000 行と 14 列が含まれています。
_ Null 値 - データの欠落が最小限に抑えられ、さらなる分析に対してデータセットの信頼性が保証されます。

print(df1[['temperature_celsius', 'humidity_pct', 'pressure_hpa', 'wind_speed_ms', 'rain', 'clouds']].describe())

上記のコードを使用して、温度、湿度、圧力、降雨量、雲の範囲、平均、広がりについての洞察を提供する数値列の要約統計量を計算しました。

主要な気象特徴の視覚化

気象の特徴をより明確に理解するために、さまざまな分布をプロットしました。

温度分布

sns.displot(df1['temperature_celsius'], bins=50, kde=True)
plt.title('Temperature Distribution')
plt.xlabel('Temperature (Celsius)')

この分布は、都市全体の気温の一般的な広がりを明らかにします。 KDE ライン プロットは、温度の確率分布を滑らかに推定します。

降水量分布

sns.displot(df1['rain'], bins=50, kde=True)
plt.title('Rainfall Distribution')
plt.xlabel('Rainfall (mm/h)')

このコードは、ケニアの都市全体の降雨分布を分析します。

湿度、気圧、風速

湿度 (%)気圧 (hPa)、および 風速 (m/s) の同様の分布プロットは、それぞれについて有益な洞察を提供します。データセット全体にわたるこれらのパラメーターのバリエーション

気象状況の分析

気象条件 (「雲」、「雨」など) がカウントされ、円グラフを使用して視覚化され、その比例分布が示されました。

condition_counts = df1['weather_condition'].value_counts()

plt.figure(figsize=(8,8))
plt.pie(condition_counts, labels=condition_counts.index, autopct='%1.1f%%', pctdistance=1.1, labeldistance=0.6, startangle=140)
plt.title('Distribution of Weather Conditions')
plt.axis('equal')
plt.show()

Comprehensive Weather Data Analysis Using Python: Temperature, Rainfall Trends, and Visualizations

City-wise Rainfall

One of the key analysis was the total rainfall by city:

rainfall_by_city = df1.groupby('city')['rain'].sum().sort_values()

plt.figure(figsize=(12,12))
rainfall_by_city.plot(kind='barh', color='skyblue')
plt.title('Total Rainfall by City')
plt.xlabel('Total Rainfall (mm)')
plt.ylabel('City')
plt.tight_layout()
plt.show()

This bar plot highlighted which cities received the most rain over the observed period, with a few outliers showing significant rainfall compared to others.

Comprehensive Weather Data Analysis Using Python: Temperature, Rainfall Trends, and Visualizations

Average Monthly Temperature

avg_temp_by_month.plot(kind='line')
plt.title('Average Monthly Temperature')

The line chart revealed temperature fluctuations across different months, showing seasonal changes.

Comprehensive Weather Data Analysis Using Python: Temperature, Rainfall Trends, and Visualizations

Average Monthly Rainfall

monthly_rain.plot(kind='line')
plt.title('Average Monthly Rainfall')

Similarly, rainfall was analyzed to observe how it varied month-to-month.

Comprehensive Weather Data Analysis Using Python: Temperature, Rainfall Trends, and Visualizations

We also visualized the data using heatmaps for a more intuitive understanding of monthly temperature and rainfall.
Here are the heatmaps for the average monthly temperature and rainfall

Comprehensive Weather Data Analysis Using Python: Temperature, Rainfall Trends, and Visualizations

Comprehensive Weather Data Analysis Using Python: Temperature, Rainfall Trends, and Visualizations

Correlation Between Weather Variables

Next, I calculated the correlation matrix between key weather variables:

correlation_matrix = df1[['temperature_celsius', 'humidity_pct', 'pressure_hpa', 'wind_speed_ms', 'rain', 'clouds']].corr()
correlation_matrix
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Between Weather Variables')

This heatmap allowed us to identify relationships between variables. For example, we observed a negative correlation between temperature and humidity, as expected.

Case Study: City Specific Trends

I have focused on individual cities such as Mombasa and Nyeri, to explore their unique weather patterns:

Mombasa Temperature Trends

plt.plot(monthly_avg_temp_msa)
plt.title('Temperature Trends in Mombasa Over Time')

This city showed significant variation in temperature across the year.

Nyeri Rainfall Trends

plt.plot(monthly_avg_rain_nyr)
plt.title('Rainfall Trends in Nyeri Over Time')

The rainfall data for Nyeri displayed a clear seasonal pattern, with rainfall peaking during certain months.

Conclusion

This analysis provides a comprehensive overview of the weather conditions in major cities, highlighting the temperature, rainfall, and other key weather variables. By using visualizations like histograms, line charts, pie charts, and heatmaps, we were able to extract meaningful insights into the data. Further analysis could involve comparing these trends with historical weather patterns or exploring predictive modeling to forecast future weather trends.

You can find the Jupyter Notebook with the full code for this analysis in my GitHub repository).


以上是使用 Python 進行綜合天氣資料分析:溫度、降雨趨勢和視覺化的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何解決Linux終端中查看Python版本時遇到的權限問題?如何解決Linux終端中查看Python版本時遇到的權限問題?Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

python對象的序列化和避難所化:第1部分python對象的序列化和避難所化:第1部分Mar 08, 2025 am 09:39 AM

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

用美麗的湯在Python中刮擦網頁:搜索和DOM修改用美麗的湯在Python中刮擦網頁:搜索和DOM修改Mar 08, 2025 am 10:36 AM

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境