首頁 >後端開發 >Python教學 >使用 Pinata、OpenAI 和 Streamlit 與您的 PDF 聊天

使用 Pinata、OpenAI 和 Streamlit 與您的 PDF 聊天

DDD
DDD原創
2024-10-11 10:36:021072瀏覽

在本教學中,我們將建立一個簡單的聊天介面,讓使用者上傳PDF,使用OpenAI 的API 檢索其內容,並使用 在類似聊天的介面中顯示回應Streamlit 。我們也將利用@pinata上傳和儲存PDF檔案。

在繼續之前讓我們先看一下我們正在建造的內容:

先決條件:

  • Python基礎
  • Pinata API 金鑰(用於上傳 PDF)
  • OpenAI API 金鑰(用於產生回應)
  • 已安裝 Streamlit(用於建置 UI)

第 1 步:項目設定

先建立一個新的Python專案目錄:

mkdir chat-with-pdf
cd chat-with-pdf
python3 -m venv venv
source venv/bin/activate
pip install streamlit openai requests PyPDF2

現在,在專案的根目錄中建立一個 .env 檔案並新增以下環境變數:

PINATA_API_KEY=<Your Pinata API Key>
PINATA_SECRET_API_KEY=<Your Pinata Secret Key>
OPENAI_API_KEY=<Your OpenAI API Key>

需要自己管理 OPENAI_API_KEY,因為它是付費的。但讓我們來看看在 Pinita 中建立 api 金鑰的過程。

所以,在繼續之前,請讓我們知道 Pinata 是什麼,這就是我們使用它的原因。

Chat with your PDF using Pinata,OpenAI and Streamlit

Pinata 是一項服務,提供用於在IPFS(星際文件系統)上儲存和管理文件的平台,這是一個去中心化分佈式 檔案儲存系統。

  • 去中心化儲存: Pinata 幫助您在去中心化網路 IPFS 上儲存檔案。
  • 易於使用:它提供使用者友善的工具和API用於檔案管理。
  • 檔案可用性: Pinata 透過將檔案「固定」在 IPFS 上來保持檔案的可存取性。
  • NFT 支援: 它非常適合儲存 NFT 和 Web3 應用程式的元資料。
  • 成本效益: Pinata 可以成為傳統雲端儲存的更便宜的替代品。

讓我們透過登入來建立所需的令牌:

Chat with your PDF using Pinata,OpenAI and Streamlit

下一步是驗證您的註冊電子郵件:

Chat with your PDF using Pinata,OpenAI and Streamlit

驗證登入後產生 API 金鑰:

Chat with your PDF using Pinata,OpenAI and Streamlit

之後,前往 API 金鑰部分並建立新的 API 金鑰:

Chat with your PDF using Pinata,OpenAI and Streamlit

最後,金鑰已成功產生。請複製該密鑰並將其保存在程式碼編輯器中。

Chat with your PDF using Pinata,OpenAI and Streamlit

OPENAI_API_KEY=<Your OpenAI API Key>
PINATA_API_KEY=dfc05775d0c8a1743247
PINATA_SECRET_API_KEY=a54a70cd227a85e68615a5682500d73e9a12cd211dfbf5e25179830dc8278efc

第 2 步:使用 Pinata 上傳 PDF

我們將使用 Pinata 的 API 上傳 PDF 並取得每個檔案的雜湊值 (CID)。建立一個名為 pinata_helper.py 的檔案來處理 PDF 上傳。

import os  # Import the os module to interact with the operating system
import requests  # Import the requests library to make HTTP requests
from dotenv import load_dotenv  # Import load_dotenv to load environment variables from a .env file

# Load environment variables from the .env file
load_dotenv()

# Define the Pinata API URL for pinning files to IPFS
PINATA_API_URL = "https://api.pinata.cloud/pinning/pinFileToIPFS"

# Retrieve Pinata API keys from environment variables
PINATA_API_KEY = os.getenv("PINATA_API_KEY")
PINATA_SECRET_API_KEY = os.getenv("PINATA_SECRET_API_KEY")

def upload_pdf_to_pinata(file_path):
    """
    Uploads a PDF file to Pinata's IPFS service.

    Args:
        file_path (str): The path to the PDF file to be uploaded.

    Returns:
        str: The IPFS hash of the uploaded file if successful, None otherwise.
    """
    # Prepare headers for the API request with the Pinata API keys
    headers = {
        "pinata_api_key": PINATA_API_KEY,
        "pinata_secret_api_key": PINATA_SECRET_API_KEY
    }

    # Open the file in binary read mode
    with open(file_path, 'rb') as file:
        # Send a POST request to Pinata API to upload the file
        response = requests.post(PINATA_API_URL, files={'file': file}, headers=headers)

        # Check if the request was successful (status code 200)
        if response.status_code == 200:
            print("File uploaded successfully")  # Print success message
            # Return the IPFS hash from the response JSON
            return response.json()['IpfsHash']
        else:
            # Print an error message if the upload failed
            print(f"Error: {response.text}")
            return None  # Return None to indicate failure

第 3 步:設定 OpenAI
接下來,我們將建立一個使用 OpenAI API 與從 PDF 中提取的文字進行互動的函數。我們將利用 OpenAI 的 gpt-4o 或 gpt-4o-mini 模型進行聊天回應。

建立一個新檔案openai_helper.py:

import os
from openai import OpenAI
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

# Initialize OpenAI client with the API key
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)

def get_openai_response(text, pdf_text):
    try:
        # Create the chat completion request
        print("User Input:", text)
        print("PDF Content:", pdf_text)  # Optional: for debugging

        # Combine the user's input and PDF content for context
        messages = [
            {"role": "system", "content": "You are a helpful assistant for answering questions about the PDF."},
            {"role": "user", "content": pdf_text},  # Providing the PDF content
            {"role": "user", "content": text}  # Providing the user question or request
        ]

        response = client.chat.completions.create(
            model="gpt-4",  # Use "gpt-4" or "gpt-4o mini" based on your access
            messages=messages,
            max_tokens=100,  # Adjust as necessary
            temperature=0.7  # Adjust to control response creativity
        )

        # Extract the content of the response
        return response.choices[0].message.content  # Corrected access method
    except Exception as e:
        return f"Error: {str(e)}"

第 4 步:建立 Streamlit 介面

現在我們已經準備好了輔助函數,是時候建立 Streamlit 應用程式來上傳 PDF、從 OpenAI 取得回應並顯示聊天了。

建立一個名為app.py的檔案:

import streamlit as st
import os
import time
from pinata_helper import upload_pdf_to_pinata
from openai_helper import get_openai_response
from PyPDF2 import PdfReader
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

st.set_page_config(page_title="Chat with PDFs", layout="centered")

st.title("Chat with PDFs using OpenAI and Pinata")

uploaded_file = st.file_uploader("Upload your PDF", type="pdf")

# Initialize session state for chat history and loading state
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "loading" not in st.session_state:
    st.session_state.loading = False

if uploaded_file is not None:
    # Save the uploaded file temporarily
    file_path = os.path.join("temp", uploaded_file.name)
    with open(file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())

    # Upload PDF to Pinata
    st.write("Uploading PDF to Pinata...")
    pdf_cid = upload_pdf_to_pinata(file_path)

    if pdf_cid:
        st.write(f"File uploaded to IPFS with CID: {pdf_cid}")

        # Extract PDF content
        reader = PdfReader(file_path)
        pdf_text = ""
        for page in reader.pages:
            pdf_text += page.extract_text()

        if pdf_text:
            st.text_area("PDF Content", pdf_text, height=200)

            # Allow user to ask questions about the PDF
            user_input = st.text_input("Ask something about the PDF:", disabled=st.session_state.loading)

            if st.button("Send", disabled=st.session_state.loading):
                if user_input:
                    # Set loading state to True
                    st.session_state.loading = True

                    # Display loading indicator
                    with st.spinner("AI is thinking..."):
                        # Simulate loading with sleep (remove in production)
                        time.sleep(1)  # Simulate network delay
                        # Get AI response
                        response = get_openai_response(user_input, pdf_text)

                    # Update chat history
                    st.session_state.chat_history.append({"user": user_input, "ai": response})

                    # Clear the input box after sending
                    st.session_state.input_text = ""

                    # Reset loading state
                    st.session_state.loading = False

            # Display chat history
            if st.session_state.chat_history:
                for chat in st.session_state.chat_history:
                    st.write(f"**You:** {chat['user']}")
                    st.write(f"**AI:** {chat['ai']}")

                # Auto-scroll to the bottom of the chat
                st.write("<style>div.stChat {overflow-y: auto;}</style>", unsafe_allow_html=True)

                # Add three dots as a loading indicator if still waiting for response
                if st.session_state.loading:
                    st.write("**AI is typing** ...")

        else:
            st.error("Could not extract text from the PDF.")
    else:
        st.error("Failed to upload PDF to Pinata.")

第 5 步:執行應用程式

要在本地運行應用程序,請使用以下命令:

streamlit run app.py

我們的檔案已成功上傳至 Pinata 平台:
Chat with your PDF using Pinata,OpenAI and Streamlit

第 6 步:解釋代碼

皮納塔上傳

  • 使用者上傳一個PDF文件,該文件暫時保存在本機,並使用upload_pdf_to_pinata函數上傳到Pinata。 Pinata 傳回一個雜湊值 (CID),它代表儲存在 IPFS 上的檔案。

PDF 提取

  • Once the file is uploaded, the content of the PDF is extracted using PyPDF2. This text is then displayed in a text area.

OpenAI Interaction

  • The user can ask questions about the PDF content using the text input. The get_openai_response function sends the user’s query along with the PDF content to OpenAI, which returns a relevant response.

Final code is available in this github repo :
https://github.com/Jagroop2001/chat-with-pdf

That's all for this blog! Stay tuned for more updates and keep building amazing apps! ?✨
Happy coding! ?

以上是使用 Pinata、OpenAI 和 Streamlit 與您的 PDF 聊天的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn