搜尋
首頁web前端js教程人工智慧中的分塊 - 你缺少的秘密武器

Chunking in AI - The Secret Sauce You

大家好! ?

你知道是什麼讓我徹夜難眠嗎?思考如何讓我們的人工智慧系統更聰明、更有效率。今天,我想談談一些聽起來很基礎但在建立強大的人工智慧應用程式時至關重要的事情:分塊 ✨。

到底什麼是分塊? ?

將分塊視為人工智慧將大量資訊分解為可管理的小部分的方式。就像你不會嘗試一下子把整個披薩塞進嘴裡一樣(或者也許你會,這裡沒有判斷力!),你的人工智慧需要將大文本分解成更小的片段才能有效地處理它們。

這對於我們所謂的 RAG(檢索增強生成)模型尤其重要。這些壞孩子不只是編造事實——他們實際上從外部來源獲取真實資訊。很整潔,對吧?

為什麼要關心? ?

看,如果你正在建立任何處理文字的東西- 無論是客戶支援聊天機器人還是花哨的知識庫搜尋- 正確進行分塊是提供準確答案的人工智慧與僅給出答案的人工智慧之間的區別。

塊太大?你的模型沒有抓到重點。
塊太小?它迷失在細節中。

讓我們親自動手:真實的例子?

Python 範例:語意分塊

首先,讓我們來看一個使用 LangChain 進行語意分塊的 Python 範例:

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import TextLoader

def semantic_chunk(file_path):
    # Load the document
    loader = TextLoader(file_path)
    document = loader.load()

    # Create a text splitter
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len,
        separators=["\n\n", "\n", " ", ""]
    )

    # Split the document into chunks
    chunks = text_splitter.split_documents(document)

    return chunks

# Example usage
chunks = semantic_chunk('knowledge_base.txt')
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}: {chunk.page_content[:50]}...")

Node.js 和 CDK 範例:建立知識庫

現在,讓我們建立一些真實的東西 - 使用 AWS CDK 和 Node.js 的無伺服器知識庫! ?

首先,CDK 基礎設施(這就是神奇發生的地方):

import * as cdk from 'aws-cdk-lib';
import * as s3 from 'aws-cdk-lib/aws-s3';
import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as opensearch from 'aws-cdk-lib/aws-opensearch';
import * as iam from 'aws-cdk-lib/aws-iam';

export class KnowledgeBaseStack extends cdk.Stack {
  constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
    super(scope, id, props);

    // S3 bucket to store our documents
    const documentBucket = new s3.Bucket(this, 'DocumentBucket', {
      removalPolicy: cdk.RemovalPolicy.DESTROY,
    });

    // OpenSearch domain for storing our chunks
    const openSearchDomain = new opensearch.Domain(this, 'DocumentSearch', {
      version: opensearch.EngineVersion.OPENSEARCH_2_5,
      capacity: {
        dataNodes: 1,
        dataNodeInstanceType: 't3.small.search',
      },
      ebs: {
        volumeSize: 10,
      },
    });

    // Lambda function for processing documents
    const processorFunction = new lambda.Function(this, 'ProcessorFunction', {
      runtime: lambda.Runtime.NODEJS_18_X,
      handler: 'index.handler',
      code: lambda.Code.fromAsset('lambda'),
      environment: {
        OPENSEARCH_DOMAIN: openSearchDomain.domainEndpoint,
      },
      timeout: cdk.Duration.minutes(5),
    });

    // Grant permissions
    documentBucket.grantRead(processorFunction);
    openSearchDomain.grantWrite(processorFunction);
  }
}

現在,執行分塊和索引的 Lambda 函數:

import { S3Event } from 'aws-lambda';
import { S3 } from 'aws-sdk';
import { Client } from '@opensearch-project/opensearch';
import { defaultProvider } from '@aws-sdk/credential-provider-node';
import { AwsSigv4Signer } from '@opensearch-project/opensearch/aws';

const s3 = new S3();
const CHUNK_SIZE = 1000;
const CHUNK_OVERLAP = 200;

// Create OpenSearch client
const client = new Client({
  ...AwsSigv4Signer({
    region: process.env.AWS_REGION,
    service: 'es',
    getCredentials: () => {
      const credentialsProvider = defaultProvider();
      return credentialsProvider();
    },
  }),
  node: `https://${process.env.OPENSEARCH_DOMAIN}`,
});

export const handler = async (event: S3Event) => {
  for (const record of event.Records) {
    const bucket = record.s3.bucket.name;
    const key = decodeURIComponent(record.s3.object.key.replace(/\+/g, ' '));

    // Get the document from S3
    const { Body } = await s3.getObject({ Bucket: bucket, Key: key }).promise();
    const text = Body.toString('utf-8');

    // Chunk the document
    const chunks = chunkText(text);

    // Index chunks in OpenSearch
    for (const [index, chunk] of chunks.entries()) {
      await client.index({
        index: 'knowledge-base',
        body: {
          content: chunk,
          documentKey: key,
          chunkIndex: index,
          timestamp: new Date().toISOString(),
        },
      });
    }
  }
};

function chunkText(text: string): string[] {
  const chunks: string[] = [];
  let start = 0;

  while (start 



<h2>
  
  
  一切如何協同運作?
</h2>

<ol>
<li>
<strong>文件上傳</strong>:當您將文件上傳到S3儲存桶時,它會觸發我們的Lambda函數。 </li>
<li>
<strong>處理</strong>:Lambda 函數:

<ul>
<li>從 S3 檢索文件</li>
<li>使用我們的智慧分塊演算法對其進行分塊</li>
<li>使用元資料為 OpenSearch 中的每個區塊建立索引</li>
</ul>
</li>
<li>
<strong>檢索</strong>:稍後,當您的應用程式需要查找資訊時,它可以查詢 OpenSearch 以查找最相關的區塊。 </li>
</ol>

<p>以下是如何查詢此知識庫的快速範例:<br>
</p>

<pre class="brush:php;toolbar:false">async function queryKnowledgeBase(query: string) {
  const response = await client.search({
    index: 'knowledge-base',
    body: {
      query: {
        multi_match: {
          query: query,
          fields: ['content'],
        },
      },
    },
  });

  return response.body.hits.hits.map(hit => ({
    content: hit._source.content,
    documentKey: hit._source.documentKey,
    score: hit._score,
  }));
}

AWS 的優勢? ️

使用 S3、Lambda 和 OpenSearch 等 AWS 服務可以讓我們:

  • 無伺服器可擴充性(無需管理伺服器!)
  • 按使用付費定價(您的錢包會感謝您的)
  • 託管服務(更少的操作工作=更多的編碼樂趣)

最後的想法?

好了,夥伴們!如何在無伺服器知識庫中實現分塊的真實範例。最好的部分?它會自動縮放並可以處理任何尺寸的文件。

記住,良好分塊的關鍵是:

  1. 為您的用例選擇正確的區塊大小
  2. 考慮重疊以維持上下文
  3. 盡可能使用自然邊界(例如句子或段落)

您在建立知識庫方面有什麼經驗?您嘗試過不同的分塊策略嗎?請在下面的評論中告訴我! ?

以上是人工智慧中的分塊 - 你缺少的秘密武器的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
JavaScript數據類型:瀏覽器和nodejs之間是否有區別?JavaScript數據類型:瀏覽器和nodejs之間是否有區別?May 14, 2025 am 12:15 AM

JavaScript核心數據類型在瀏覽器和Node.js中一致,但處理方式和額外類型有所不同。 1)全局對像在瀏覽器中為window,在Node.js中為global。 2)Node.js獨有Buffer對象,用於處理二進制數據。 3)性能和時間處理在兩者間也有差異,需根據環境調整代碼。

JavaScript評論:使用//和 / * * / * / * /JavaScript評論:使用//和 / * * / * / * /May 13, 2025 pm 03:49 PM

JavaScriptusestwotypesofcomments:single-line(//)andmulti-line(//).1)Use//forquicknotesorsingle-lineexplanations.2)Use//forlongerexplanationsorcommentingoutblocksofcode.Commentsshouldexplainthe'why',notthe'what',andbeplacedabovetherelevantcodeforclari

Python vs. JavaScript:開發人員的比較分析Python vs. JavaScript:開發人員的比較分析May 09, 2025 am 12:22 AM

Python和JavaScript的主要區別在於類型系統和應用場景。 1.Python使用動態類型,適合科學計算和數據分析。 2.JavaScript採用弱類型,廣泛用於前端和全棧開發。兩者在異步編程和性能優化上各有優勢,選擇時應根據項目需求決定。

Python vs. JavaScript:選擇合適的工具Python vs. JavaScript:選擇合適的工具May 08, 2025 am 12:10 AM

選擇Python還是JavaScript取決於項目類型:1)數據科學和自動化任務選擇Python;2)前端和全棧開發選擇JavaScript。 Python因其在數據處理和自動化方面的強大庫而備受青睞,而JavaScript則因其在網頁交互和全棧開發中的優勢而不可或缺。

Python和JavaScript:了解每個的優勢Python和JavaScript:了解每個的優勢May 06, 2025 am 12:15 AM

Python和JavaScript各有優勢,選擇取決於項目需求和個人偏好。 1.Python易學,語法簡潔,適用於數據科學和後端開發,但執行速度較慢。 2.JavaScript在前端開發中無處不在,異步編程能力強,Node.js使其適用於全棧開發,但語法可能複雜且易出錯。

JavaScript的核心:它是在C還是C上構建的?JavaScript的核心:它是在C還是C上構建的?May 05, 2025 am 12:07 AM

javascriptisnotbuiltoncorc; sanInterpretedlanguagethatrunsonenginesoftenwritteninc.1)JavascriptwasdesignedAsignedAsalightWeight,drackendedlanguageforwebbrowsers.2)Enginesevolvedfromsimpleterterpretpretpretpretpreterterpretpretpretpretpretpretpretpretpretcompilerers,典型地,替代品。

JavaScript應用程序:從前端到後端JavaScript應用程序:從前端到後端May 04, 2025 am 12:12 AM

JavaScript可用於前端和後端開發。前端通過DOM操作增強用戶體驗,後端通過Node.js處理服務器任務。 1.前端示例:改變網頁文本內容。 2.後端示例:創建Node.js服務器。

Python vs. JavaScript:您應該學到哪種語言?Python vs. JavaScript:您應該學到哪種語言?May 03, 2025 am 12:10 AM

選擇Python還是JavaScript應基於職業發展、學習曲線和生態系統:1)職業發展:Python適合數據科學和後端開發,JavaScript適合前端和全棧開發。 2)學習曲線:Python語法簡潔,適合初學者;JavaScript語法靈活。 3)生態系統:Python有豐富的科學計算庫,JavaScript有強大的前端框架。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具