搜尋
首頁web前端js教程透過 REST API 上的 GraphQL 增強 React 應用程式

In the rapidly changing world of web development, optimizing and scaling applications is always an issue. React.js had an extraordinary success for frontend development as a tool, that provides a robust way to create user interfaces. But it gets complicated with growing applications, especially when it comes to multiple REST API endpoints. Concerns such as over-fetching, where excessive data than required can be a source of performance bottleneck and a poor user experience.

Among the solutions to these challenges is adopting the use of GraphQL with React applications. If your backend has multiple REST endpoints, then introducing a GraphQL layer that internally calls your REST API endpoints can enhance your application from overfetching and streamline your frontend application. In this article, you will find how to use it, the advantages and disadvantages of this approach, various challenges; and how to address them. We will also dive deeper into some practical examples of how GraphQL can help you improve the ways you work with your data.

Overfetching in REST APIs

In REST APIs, Over-fetching occurs when the amount of data that the API delivers to the client is more than what the client requires. This is a common problem with REST APIs, which often returns a fixed Object or Response Schema. To better understand this problem let us consider an example.

Consider a user profile page where the it is only required to show the user’s name and email. With a typical REST API, fetching the user data might look like this:

fetch('/api/users/1')
  .then(response => response.json())
  .then(user => {
    // Use the user's name and profilePicture in the UI
  });

The API response will include unnecessary data:

{
  "id": 1,
  "name": "John Doe",
  "profilePicture": "/images/john.jpg",
  "email": "john@example.com",
  "address": "123 Denver St",
  "phone": "111-555-1234",
  "preferences": {
    "newsletter": true,
    "notifications": true
  },
  // ...more details
}

Although the application only requires the name and email fields of the user, the API returns the whole user object. This additional data often increases the payload size, take more bandwidth and can eventually slow down the application when used on a device with limited resources or a slow network connection.

GraphQL as a Solution

GraphQL addresses the overfetching problem by allowing clients to request exactly the data they need. By integrating a GraphQL server into your application, you can create a flexible and efficient data-fetching layer that communicates with your existing REST APIs.

How It Works

  1. GraphQL Server Setup: You introduce a GraphQL server that serves as an intermediary between your React frontend and the REST APIs.
  2. Schema Definition: You define a GraphQL schema that specifies the data types and queries your frontend requires.
  3. Resolvers Implementation: You implement resolvers in the GraphQL server that fetch data from the REST APIs and return only the necessary fields.
  4. Frontend Integration: You update your React application to use GraphQL queries instead of direct REST API calls.

This approach allows you to optimize data fetching without overhauling your existing backend infrastructure.

Implementing GraphQL in a React Application

Let’s look at how to set up a GraphQL server and integrate it into a React application.

Install Dependencies:

npm install apollo-server graphql axios

Define the Schema

Create a file called schema.js:

const { gql } = require('apollo-server');

const typeDefs = gql`
  type User {
    id: ID!
    name: String
    email: String  // Ensure this matches exactly with the frontend query
  }

  type Query {
    user(id: ID!): User
  }
`;

module.exports = typeDefs;

This schema defines a User type and a user query that fetches a user by ID.

Implement Resolvers

Create a file called resolvers.js:

const resolvers = {
  Query: {
    user: async (_, { id }) => {
      try {
        const response = await fetch(`https://jsonplaceholder.typicode.com/users/${id}`);
        const user = await response.json();

        return {
          id: user.id,
          name: user.name,
          email: user.email,  // Return email instead of profilePicture
        };
      } catch (error) {
        throw new Error(`Failed to fetch user: ${error.message}`);
      }
    },
  },
};

module.exports = resolvers;

The resolver for the user query fetches data from the REST API and returns only the required fields.

We will use https://jsonplaceholder.typicode.com/for our fake REST API.

Set Up the Server

Create a server.js file:

const { ApolloServer } = require('apollo-server');
const typeDefs = require('./schema');
const resolvers = require('./resolvers');

const server = new ApolloServer({
  typeDefs,
  resolvers,
});

server.listen({ port: 4000 }).then(({ url }) => {
  console.log(`GraphQL Server ready at ${url}`);
});

Start the server:

node server.js

Your GraphQL server is live at http://localhost:4000/graphql and if you query your server, it will take you to this page.

Enhancing React Applications with GraphQL Over REST APIs

Integrating with the React Application

We will now change the React application to use the GraphQL API.

Install Apollo Client

npm install @apollo/client graphql

Configure Apollo Client

import { ApolloClient, InMemoryCache } from '@apollo/client';

const client = new ApolloClient({
  uri: 'http://localhost:4000', 
  cache: new InMemoryCache(),
});

Write the GraphQL Query

const GET_USER = gql`
  query GetUser($id: ID!) {
    user(id: $id) {
      id
      name
      email
    }
  }
`;

Now integrate the above pieces of codes with your react app. Here is a simple react app below which lets a user select the userId and displays the information:

import { useState } from 'react';
import { ApolloClient, InMemoryCache, ApolloProvider, gql, useQuery } from '@apollo/client';
import './App.css';  // Link to the updated CSS

const client = new ApolloClient({
  uri: 'http://localhost:4000',  // Ensure this is the correct URL for your GraphQL server
  cache: new InMemoryCache(),
});

const GET_USER = gql`
  query GetUser($id: ID!) {
    user(id: $id) {
      id
      name
      email
    }
  }
`;

const User = ({ userId }) => {
  const { loading, error, data } = useQuery(GET_USER, {
    variables: { id: userId },
  });

  if (loading) return <p>Loading...</p>;
  if (error) return <p>Error: {error.message}</p>;

  return (
    <div classname="user-container">
      <h2 id="data-user-name">{data.user.name}</h2>
      <p>Email: {data.user.email}</p>
    </div>
  );
};

const App = () => {
  const [selectedUserId, setSelectedUserId] = useState("1");

  return (
    <apolloprovider client="{client}">
      <div classname="app-container">
        <h1 id="GraphQL-User-Lookup">GraphQL User Lookup</h1>
        <div classname="dropdown-container">
          <label htmlfor="userSelect">Select User ID:</label>
          <select id="userSelect" value="{selectedUserId}" onchange="{(e)"> setSelectedUserId(e.target.value)}
          >
            {Array.from({ length: 10 }, (_, index) => (
              <option key="{index" value="{index">
                {index + 1}
              </option>
            ))}
          </select>
        </div>
        <user userid="{selectedUserId}"></user>
      </div>
    </apolloprovider>
  );
};

export default App;

Result:

Simple User

Enhancing React Applications with GraphQL Over REST APIs

Working with Multiple Endpoints

Imagine a scenario where you need to retrieve a specific user’s posts, along with the individual comments on each post. Instead of making three separate API calls from your frontend React app and dealing with unnecessary data, you can streamline the process with GraphQL. By defining a schema and crafting a GraphQL query, you can request only the exact data your UI requires, all in one efficient request.

We need to fetch user data, their posts, and comments for each post from the different endpoints. We’ll use fetch to gather data from the multiple endpoints and return it via GraphQL.

Update Resolvers

const fetch = require('node-fetch');

const resolvers = {
  Query: {
    user: async (_, { id }) => {
      try {
        // fetch user
        const userResponse = await fetch(`https://jsonplaceholder.typicode.com/users/${id}`);
        const user = await userResponse.json();

        // fetch posts for a user
        const postsResponse = await fetch(`https://jsonplaceholder.typicode.com/posts?userId=${id}`);
        const posts = await postsResponse.json();

        // fetch comments for a post
        const postsWithComments = await Promise.all(
          posts.map(async (post) => {
            const commentsResponse = await fetch(`https://jsonplaceholder.typicode.com/comments?postId=${post.id}`);
            const comments = await commentsResponse.json();
            return { ...post, comments };
          })
        );

        return {
          id: user.id,
          name: user.name,
          email: user.email,
          posts: postsWithComments,
        };
      } catch (error) {
        throw new Error(`Failed to fetch user data: ${error.message}`);
      }
    },
  },
};

module.exports = resolvers;

Update GraphQL Schema

const { gql } = require('apollo-server');

const typeDefs = gql`
  type Comment {
    id: ID!
    name: String
    email: String
    body: String
  }

  type Post {
    id: ID!
    title: String
    body: String
    comments: [Comment]
  }

  type User {
    id: ID!
    name: String
    email: String
    posts: [Post]
  }

  type Query {
    user(id: ID!): User
  }
`;

module.exports = typeDefs;

Server setup in server.js remains same. Once we update the React.js code, we get the below output:

Detailed User

Enhancing React Applications with GraphQL Over REST APIs

Benefits of This Approach

Integrating GraphQL into your React application provides several advantages:

Eliminating Overfetching

A key feature of GraphQL is that it only fetches exactly what you request. The server only returns the requested fields and ensures that the amount of data transferred over the network is reduced by serving only what the query demands and thus improving performance.

Simplifying Frontend Code

GraphQL enables you to get the needful information in a single query regardless of their origin. Internally it could be making 3 API calls to get the information. This helps to simplify your frontend code because now you don’t need to orchestrate different async requests and combine their results.

Improving Developer’s Experience

A strong typing and schema introspection offer better tooling and error checking than in the traditional API implementation. Further to that, there are interactive environments where developers can build and test queries, including GraphiQL or Apollo Explorer.

Addressing Complexities and Challenges

This approach has some advantages but it also introduces some challenges that have to be managed.

Additional Backend Layer

The introduction of the GraphQL server creates an extra layer in your backend architecture and if not managed properly, it becomes a single point of failure.

Solution: Pay attention to error handling and monitoring. Containerization and orchestration tools like Docker and Kubernetes can help manage scalability and reliability.

Potential Performance Overhead

The GraphQL server may make multiple REST API calls to resolve a single query, which can introduce latency and overhead to the system.

Solution: Cache the results to avoid making several calls to the API. There exist some tools such as DataLoader which can handle the process of batching and caching of requests.

Conclusion

"Simplicity is the ultimate sophistication" — Leonardo da Vinci

Integrating GraphQL into your React application is more than just a performance optimization — it’s a strategic move towards building more maintainable, scalable, and efficient applications. By addressing overfetching and simplifying data management, you not only enhance the user experience but also empower your development team with better tools and practices.

While the introduction of a GraphQL layer comes with its own set of challenges, the benefits often outweigh the complexities. By carefully planning your implementation, optimizing your resolvers, and securing your endpoints, you can mitigate potential drawbacks. Moreover, the flexibility that GraphQL offers can future-proof your application as it grows and evolves.

Embracing GraphQL doesn’t mean abandoning your existing REST APIs. Instead, it allows you to leverage their strengths while providing a more efficient and flexible data access layer for your frontend applications. This hybrid approach combines the reliability of REST with the agility of GraphQL, giving you the best of both worlds.

If you’re ready to take your React application to the next level, consider integrating GraphQL into your data fetching strategy. The journey might present challenges, but the rewards — a smoother development process, happier developers, and satisfied users — make it a worthwhile endeavor.

Full Code Available

You can find the full code for this implementation on my GitHub repository: GitHub Link.

以上是透過 REST API 上的 GraphQL 增強 React 應用程式的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. JavaScript:開發人員的比較分析Python vs. JavaScript:開發人員的比較分析May 09, 2025 am 12:22 AM

Python和JavaScript的主要區別在於類型系統和應用場景。 1.Python使用動態類型,適合科學計算和數據分析。 2.JavaScript採用弱類型,廣泛用於前端和全棧開發。兩者在異步編程和性能優化上各有優勢,選擇時應根據項目需求決定。

Python vs. JavaScript:選擇合適的工具Python vs. JavaScript:選擇合適的工具May 08, 2025 am 12:10 AM

選擇Python還是JavaScript取決於項目類型:1)數據科學和自動化任務選擇Python;2)前端和全棧開發選擇JavaScript。 Python因其在數據處理和自動化方面的強大庫而備受青睞,而JavaScript則因其在網頁交互和全棧開發中的優勢而不可或缺。

Python和JavaScript:了解每個的優勢Python和JavaScript:了解每個的優勢May 06, 2025 am 12:15 AM

Python和JavaScript各有優勢,選擇取決於項目需求和個人偏好。 1.Python易學,語法簡潔,適用於數據科學和後端開發,但執行速度較慢。 2.JavaScript在前端開發中無處不在,異步編程能力強,Node.js使其適用於全棧開發,但語法可能複雜且易出錯。

JavaScript的核心:它是在C還是C上構建的?JavaScript的核心:它是在C還是C上構建的?May 05, 2025 am 12:07 AM

javascriptisnotbuiltoncorc; sanInterpretedlanguagethatrunsonenginesoftenwritteninc.1)JavascriptwasdesignedAsignedAsalightWeight,drackendedlanguageforwebbrowsers.2)Enginesevolvedfromsimpleterterpretpretpretpretpreterterpretpretpretpretpretpretpretpretpretcompilerers,典型地,替代品。

JavaScript應用程序:從前端到後端JavaScript應用程序:從前端到後端May 04, 2025 am 12:12 AM

JavaScript可用於前端和後端開發。前端通過DOM操作增強用戶體驗,後端通過Node.js處理服務器任務。 1.前端示例:改變網頁文本內容。 2.後端示例:創建Node.js服務器。

Python vs. JavaScript:您應該學到哪種語言?Python vs. JavaScript:您應該學到哪種語言?May 03, 2025 am 12:10 AM

選擇Python還是JavaScript應基於職業發展、學習曲線和生態系統:1)職業發展:Python適合數據科學和後端開發,JavaScript適合前端和全棧開發。 2)學習曲線:Python語法簡潔,適合初學者;JavaScript語法靈活。 3)生態系統:Python有豐富的科學計算庫,JavaScript有強大的前端框架。

JavaScript框架:為現代網絡開發提供動力JavaScript框架:為現代網絡開發提供動力May 02, 2025 am 12:04 AM

JavaScript框架的強大之處在於簡化開發、提升用戶體驗和應用性能。選擇框架時應考慮:1.項目規模和復雜度,2.團隊經驗,3.生態系統和社區支持。

JavaScript,C和瀏覽器之間的關係JavaScript,C和瀏覽器之間的關係May 01, 2025 am 12:06 AM

引言我知道你可能會覺得奇怪,JavaScript、C 和瀏覽器之間到底有什麼關係?它們之間看似毫無關聯,但實際上,它們在現代網絡開發中扮演著非常重要的角色。今天我們就來深入探討一下這三者之間的緊密聯繫。通過這篇文章,你將了解到JavaScript如何在瀏覽器中運行,C 在瀏覽器引擎中的作用,以及它們如何共同推動網頁的渲染和交互。 JavaScript與瀏覽器的關係我們都知道,JavaScript是前端開發的核心語言,它直接在瀏覽器中運行,讓網頁變得生動有趣。你是否曾經想過,為什麼JavaScr

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具