搜尋
首頁web前端js教程#aysofCode 九月:我的 DSA 掌握之旅

This September, I embarked on a self-imposed 30 Days of Code challenge, a commitment to solve at least two Data Structures and Algorithms (DSA) problems every single day. My goal was to push myself out of my comfort zone, build consistency, and improve my problem-solving skills and programming logic.

I didn’t just stick to one platform — I completed HackerRank’s 30 Days of Code challenge, LeetCode’s 30 Days of JavaScript plan, and also tackled LeetCode’s Top Interview 150 track, a collection of 150 typical interview problems for anyone prepping for a coding interview. Additionally, I took a few lessons on Structy to further strengthen my grasp of DSA concepts.

I solved most problems using JavaScript (except for a few HackerRank problems where JavaScript wasn’t supported, so I used Python instead). To help keep myself accountable, as well as share my progress, I posted the challenges I solved each day on Twitter. You can find them in this quote trail: <script> // Detect dark theme var iframe = document.getElementById('tweet-1840720685099864068-290'); if (document.body.className.includes('dark-theme')) { iframe.src = "https://platform.twitter.com/embed/Tweet.html?id=1840720685099864068&theme=dark" } </script>

Data Types, Basic to Advanced

Each day exposed me to different types of data structures and algorithms. I learned to handle

  • arrays
  • strings
  • objects
  • maps
  • sets
  • numbers
  • booleans, and more.

Some problems involved more complex structures like linked lists and binary trees, while others threw matrices / n-D arrays into the mix, letting me deal in multidimensional spaces.

The diversity of the problems kept me on my toes. The problems on LeetCode’s 30 Days of JavaScript track introduced me to fundamentals like

  • array transformations
  • function transformations
  • closures
  • classes
  • JSONs
  • Promises & time.

LeetCode’s Top Interview 150 track took things a step further, tossing me between problems of varying difficulty and approach. Solving at least one of these each day was invaluable. These problems also challenged me to think more often about optimization and how different approaches could drastically affect runtime and memory efficiency.

I also took Structy lessons alongside these challenges to solidify my understanding of key concepts. I learned more efficient ways to handle some data structures, like the sections on linked lists and binary trees. I came to especially appreciate the platform’s dynamic approach to teaching and breaking down problems in a way that makes them easy to digest. It’s a great platform to learn DSA at a very basic level and then translate this understanding to other coding problems I face.

Approaches and Techniques

As the days progressed, I encountered many kinds of solution approaches, problem-solving techniques such as

  • recursion
  • two-pointer
  • hashmap
  • hashtable
  • greedy algorithms
  • binary search
  • sliding window
  • dynamic programming
  • caching (memoization), and more.

I found the two-pointer approach a straightforward yet powerful way to work through problems involving sequences (primarily arrays and strings), by reducing the search space for more efficient solutions. I also used greedy algorithms where I needed to make locally optimal choices at each step.

Sliding window techniques were another eye-opener— initially challenging, but valuable for problems involving subarrays or substrings; problems that required keeping track of a moving range of elements within a sequence. Hashmaps and hashtables are great for key-value pairs in problems involving frequent lookups.

One of the most complex techniques I worked with was dynamic programming. Early on, I found DP quite intimidating due to the difficulty in recognizing overlapping subproblems, but with repeated exposure memoization became my best friend in optimizing recursive calls.

Function Manipulation (feat. Wrappers & Prototypes)

In addition to core DSA problems, I also got the chance to try out more advanced JavaScript concepts. I wrote wrapper functions, learning how to control the flow of my code and extend functionality for specific requirements. I even learned to set timers on functions which allows me handle time-sensitive operations or limit how often certain functions can execute.

Working with prototypes showed me that data types can be manipulated beyond their inbuilt capabilities by creating custom methods. This allowed me to extend the inbuilt functionality of data types like objects and arrays in new ways. I came to appreciate the importance of writing clean, modular code.

我还学习了记忆化,这是一种修改函数以存储先前调用的参数及其结果的技术!这是一种缓存,有助于提高多次调用同一函数的问题的性能。我在这里写了关于我的 Memoize 解决方案击败 99%(内存)的文章:Memoize 直观解决方案击败 99% 内存。

测试与优化

在这段旅程中我开始更加关注的另一件事是我的代码的优化。在正确介绍了 Structy 上的大 O 表示法之后,我理解了时间和空间复杂性的重要性,并且学会了解决最常见问题的最佳技术。在 HackerRank 挑战赛接近尾声时,我还学会了使用类测试代码并编写泛型。

外卖

当我完成 30 天编程挑战时,我感受到了深刻的成长感。它提高了我处理各种问题的能力,加深了我对 JavaScript 和 DSA 的理解。这一个月的旅程不仅仅是解决问题,还提醒自己,我真的可以付出努力。看到一致性和纪律的回报,我的心态得到了更新,可以充满信心和强大的技术工具包来应对任何挑战。

这次经历标志着我编程之旅的一个重要里程碑。我在这 30 天里磨练的技能无疑将延续到我作为软件工程师的职业生涯中。

我为自己付出的努力感到自豪,也感谢在整个挑战过程中为我加油、提供支持和智慧的朋友们。

#aysofCode September: My journey to DSA Mastery

以上是#aysofCode 九月:我的 DSA 掌握之旅的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. JavaScript:開發人員的比較分析Python vs. JavaScript:開發人員的比較分析May 09, 2025 am 12:22 AM

Python和JavaScript的主要區別在於類型系統和應用場景。 1.Python使用動態類型,適合科學計算和數據分析。 2.JavaScript採用弱類型,廣泛用於前端和全棧開發。兩者在異步編程和性能優化上各有優勢,選擇時應根據項目需求決定。

Python vs. JavaScript:選擇合適的工具Python vs. JavaScript:選擇合適的工具May 08, 2025 am 12:10 AM

選擇Python還是JavaScript取決於項目類型:1)數據科學和自動化任務選擇Python;2)前端和全棧開發選擇JavaScript。 Python因其在數據處理和自動化方面的強大庫而備受青睞,而JavaScript則因其在網頁交互和全棧開發中的優勢而不可或缺。

Python和JavaScript:了解每個的優勢Python和JavaScript:了解每個的優勢May 06, 2025 am 12:15 AM

Python和JavaScript各有優勢,選擇取決於項目需求和個人偏好。 1.Python易學,語法簡潔,適用於數據科學和後端開發,但執行速度較慢。 2.JavaScript在前端開發中無處不在,異步編程能力強,Node.js使其適用於全棧開發,但語法可能複雜且易出錯。

JavaScript的核心:它是在C還是C上構建的?JavaScript的核心:它是在C還是C上構建的?May 05, 2025 am 12:07 AM

javascriptisnotbuiltoncorc; sanInterpretedlanguagethatrunsonenginesoftenwritteninc.1)JavascriptwasdesignedAsignedAsalightWeight,drackendedlanguageforwebbrowsers.2)Enginesevolvedfromsimpleterterpretpretpretpretpreterterpretpretpretpretpretpretpretpretpretcompilerers,典型地,替代品。

JavaScript應用程序:從前端到後端JavaScript應用程序:從前端到後端May 04, 2025 am 12:12 AM

JavaScript可用於前端和後端開發。前端通過DOM操作增強用戶體驗,後端通過Node.js處理服務器任務。 1.前端示例:改變網頁文本內容。 2.後端示例:創建Node.js服務器。

Python vs. JavaScript:您應該學到哪種語言?Python vs. JavaScript:您應該學到哪種語言?May 03, 2025 am 12:10 AM

選擇Python還是JavaScript應基於職業發展、學習曲線和生態系統:1)職業發展:Python適合數據科學和後端開發,JavaScript適合前端和全棧開發。 2)學習曲線:Python語法簡潔,適合初學者;JavaScript語法靈活。 3)生態系統:Python有豐富的科學計算庫,JavaScript有強大的前端框架。

JavaScript框架:為現代網絡開發提供動力JavaScript框架:為現代網絡開發提供動力May 02, 2025 am 12:04 AM

JavaScript框架的強大之處在於簡化開發、提升用戶體驗和應用性能。選擇框架時應考慮:1.項目規模和復雜度,2.團隊經驗,3.生態系統和社區支持。

JavaScript,C和瀏覽器之間的關係JavaScript,C和瀏覽器之間的關係May 01, 2025 am 12:06 AM

引言我知道你可能會覺得奇怪,JavaScript、C 和瀏覽器之間到底有什麼關係?它們之間看似毫無關聯,但實際上,它們在現代網絡開發中扮演著非常重要的角色。今天我們就來深入探討一下這三者之間的緊密聯繫。通過這篇文章,你將了解到JavaScript如何在瀏覽器中運行,C 在瀏覽器引擎中的作用,以及它們如何共同推動網頁的渲染和交互。 JavaScript與瀏覽器的關係我們都知道,JavaScript是前端開發的核心語言,它直接在瀏覽器中運行,讓網頁變得生動有趣。你是否曾經想過,為什麼JavaScr

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中