首頁  >  文章  >  後端開發  >  收集和處理 INMET-BDMEP 氣候數據

收集和處理 INMET-BDMEP 氣候數據

Barbara Streisand
Barbara Streisand原創
2024-09-30 06:11:021021瀏覽

Climate data plays a crucial role in several sectors, assisting in studies and forecasts that impact areas such as agriculture, urban planning, and natural resource management.

The National Institute of Meteorology (INMET) offers the Meteorological Database (BDMEP) on its website monthly. This database contains a historical series of climate information collected by hundreds of measuring stations distributed throughout Brazil. In BDMEP, you will find detailed data on rainfall, temperature, air humidity and wind speed.

With hourly updates, this data is quite voluminous, providing a rich basis for detailed analysis and informed decision making.

In this post I will show how to collect and process climate data from INMET-BDMEP. We will collect the raw data files available on the INMET website and then process this data to facilitate analysis.

1. Required Python Packages

To achieve the aforementioned objectives, you will only need to have installed three packages:

  • httpx to make HTTP requests
  • Pandas for reading and processing data
  • tqdm to show a friendly progress bar in the terminal while the program downloads or reads files

To install the necessary packages, run the following command in the terminal:

pip install httpx pandas tqdm

If you are using a virtual environment (venv) with poetry, for example, use the following command:

poetry add httpx pandas tqdm

2. Collection of files

2.1 File URL pattern

The address of BDMEP data files follows a very simple pattern. The pattern is as follows:

https://portal.inmet.gov.br/uploads/dadoshistoricos/{year}.zip

The only part that changes is the file name, which is simply the reference year of the data. Monthly, the file for the most recent (current) year is replaced with updated data.

This makes it easy to create code to automatically collect data files from all available years.

In fact, the historical series available begins in the year 2000.

2.2 Collection strategy

To collect data files from INMET-BDMEP we will use the httpx library to make HTTP requests and the tqdm library to show a friendly progress bar in the terminal.

First, let's import the necessary packages:

import datetime as dt
from pathlib import Path

import httpx
from tqdm import tqdm

We have already identified the URL pattern of the INMET-BDMEP data files. Now let's create a function that accepts a year as an argument and returns the URL of the file for that year.

def build_url(year):
    return f"https://portal.inmet.gov.br/uploads/dadoshistoricos/{year}.zip"

To check whether the URL file has been updated, we can use the information present in the header returned by an HTTP request. On well-configured servers, we can request just this header with the HEAD method. In this case, the server was well configured and we can use this method.

The response to the HEAD request will have the following format:

Mon, 01 Sep 2024 00:01:00 GMT

To parse this date/time I created the following function in Python, which accepts a string and returns a datetime object:

def parse_last_modified(last_modified: str) -> dt.datetime:
    return dt.datetime.strptime(
        last_modified,
        "%a, %d %b %Y %H:%M:%S %Z"
    )

So, we can use the date/time of the last modification to include it in the name of the file we are going to download, using string interpolation (f-strings):

def build_local_filename(year: int, last_modified: dt.datetime) -> str:
    return f"inmet-bdmep_{year}_{last_modified:%Y%m%d}.zip"

This way, you can easily check whether the file with the most recent data already exists on our local file system. If the file already exists, the program can be terminated; otherwise, we must proceed with collecting the file, making the request to the server.

The download_year function below downloads the file for a specific year. If the file already exists in the destination directory, the function simply returns without doing anything.

Note how we use tqdm to show a friendly progress bar in the terminal while the file is downloaded.

def download_year(
    year: int,
    destdirpath: Path,
    blocksize: int = 2048,
) -> None:

    if not destdirpath.exists():
        destdirpath.mkdir(parents=True)

    url = build_url(year)

    headers = httpx.head(url).headers
    last_modified = parse_last_modified(headers["Last-Modified"])
    file_size = int(headers.get("Content-Length", 0))

    destfilename = build_local_filename(year, last_modified)
    destfilepath = destdirpath / destfilename
    if destfilepath.exists():
        return

    with httpx.stream("GET", url) as r:
        pb = tqdm(
            desc=f"{year}",
            dynamic_ncols=True,
            leave=True,
            total=file_size,
            unit="iB",
            unit_scale=True,
        )
        with open(destfilepath, "wb") as f:
            for data in r.iter_bytes(blocksize):
                f.write(data)
                pb.update(len(data))
        pb.close()

2.3 File collection

Now that we have all the necessary functions, we can collect the INMET-BDMEP data files.

Using a for loop we can download the files for all available years. The following code does exactly that. Starting from the year 2000 to the current year.

destdirpath = Path("data")
for year in range(2000, dt.datetime.now().year + 1):
    download_year(year, destdirpath)

3. Reading and processing of data

With the INMET-BDMEP raw data files downloaded, we can now read and process the data.

Let's import the necessary packages:

import csv
import datetime as dt
import io
import re
import zipfile
from pathlib import Path

import numpy as np
import pandas as pd
from tqdm import tqdm

3.1 File structure

Inside the ZIP file provided by INMET we find several CSV files, one for each weather station.

Porém, nas primeiras linhas desses arquivos CSV encontramos informações sobre a estação, como a região, a unidade federativa, o nome da estação, o código WMO, as coordenadas geográficas (latitude e longitude), a altitude e a data de fundação. Vamos extrair essas informações para usar como metadados.

3.2 Leitura dos dados com pandas

A leitura dos arquivos será feita em duas partes: primeiro, será feita a leitura dos metadados das estações meteorológicas; depois, será feita a leitura dos dados históricos propriamente ditos.

3.2.1 Metadados

Para extrair os metadados nas primeiras 8 linhas do arquivo CSV vamos usar o pacote embutido csv do Python.

Para entender a função a seguir é necessário ter um conhecimento um pouco mais avançado de como funciona handlers de arquivos (open), iteradores (next) e expressões regulares (re.match).

def read_metadata(filepath: Path | zipfile.ZipExtFile) -> dict[str, str]:
    if isinstance(filepath, zipfile.ZipExtFile):
        f = io.TextIOWrapper(filepath, encoding="latin-1")
    else:
        f = open(filepath, "r", encoding="latin-1")
    reader = csv.reader(f, delimiter=";")
    _, regiao = next(reader)
    _, uf = next(reader)
    _, estacao = next(reader)
    _, codigo_wmo = next(reader)
    _, latitude = next(reader)
    try:
        latitude = float(latitude.replace(",", "."))
    except:
        latitude = np.nan
    _, longitude = next(reader)
    try:
        longitude = float(longitude.replace(",", "."))
    except:
        longitude = np.nan
    _, altitude = next(reader)
    try:
        altitude = float(altitude.replace(",", "."))
    except:
        altitude = np.nan
    _, data_fundacao = next(reader)
    if re.match("[0-9]{4}-[0-9]{2}-[0-9]{2}", data_fundacao):
        data_fundacao = dt.datetime.strptime(
            data_fundacao,
            "%Y-%m-%d",
        )
    elif re.match("[0-9]{2}/[0-9]{2}/[0-9]{2}", data_fundacao):
        data_fundacao = dt.datetime.strptime(
            data_fundacao,
            "%d/%m/%y",
        )
    f.close()
    return {
        "regiao": regiao,
        "uf": uf,
        "estacao": estacao,
        "codigo_wmo": codigo_wmo,
        "latitude": latitude,
        "longitude": longitude,
        "altitude": altitude,
        "data_fundacao": data_fundacao,
    }

Em resumo, a função read_metadata definida acima lê as primeiras oito linhas do arquivo, processa os dados e retorna um dicionário com as informações extraídas.

3.2.2 Dados históricos

Aqui, finalmente, veremos como fazer a leitura do arquivo CSV. Na verdade é bastante simples. Basta usar a função read_csv do Pandas com os argumentos certos.

A seguir está exposto a chamada da função com os argumentos que eu determinei para a correta leitura do arquivo.

pd.read_csv(
    "arquivo.csv",
    sep=";",
    decimal=",",
    na_values="-9999",
    encoding="latin-1",
    skiprows=8,
    usecols=range(19),
)

Primeiro é preciso dizer que o caractere separador das colunas é o ponto-e-vírgula (;), o separador de número decimal é a vírgula (,) e o encoding é latin-1, muito comum no Brasil.

Também é preciso dizer para pular as 8 primeiras linhas do arquivo (skiprows=8), que contém os metadados da estação), e usar apenas as 19 primeiras colunas (usecols=range(19)).

Por fim, vamos considerar o valor -9999 como sendo nulo (na_values="-9999").

3.3 Tratamento dos dados

Os nomes das colunas dos arquivos CSV do INMET-BDMEP são bem descritivos, mas um pouco longos. E os nomes não são consistentes entre os arquivos e ao longo do tempo. Vamos renomear as colunas para padronizar os nomes e facilitar a manipulação dos dados.

A seguinte função será usada para renomear as colunas usando expressões regulares (RegEx):

def columns_renamer(name: str) -> str:
    name = name.lower()
    if re.match(r"data", name):
        return "data"
    if re.match(r"hora", name):
        return "hora"
    if re.match(r"precipita[çc][ãa]o", name):
        return "precipitacao"
    if re.match(r"press[ãa]o atmosf[ée]rica ao n[íi]vel", name):
        return "pressao_atmosferica"
    if re.match(r"press[ãa]o atmosf[ée]rica m[áa]x", name):
        return "pressao_atmosferica_maxima"
    if re.match(r"press[ãa]o atmosf[ée]rica m[íi]n", name):
        return "pressao_atmosferica_minima"
    if re.match(r"radia[çc][ãa]o", name):
        return "radiacao"
    if re.match(r"temperatura do ar", name):
        return "temperatura_ar"
    if re.match(r"temperatura do ponto de orvalho", name):
        return "temperatura_orvalho"
    if re.match(r"temperatura m[áa]x", name):
        return "temperatura_maxima"
    if re.match(r"temperatura m[íi]n", name):
        return "temperatura_minima"
    if re.match(r"temperatura orvalho m[áa]x", name):
        return "temperatura_orvalho_maxima"
    if re.match(r"temperatura orvalho m[íi]n", name):
        return "temperatura_orvalho_minima"
    if re.match(r"umidade rel\. m[áa]x", name):
        return "umidade_relativa_maxima"
    if re.match(r"umidade rel\. m[íi]n", name):
        return "umidade_relativa_minima"
    if re.match(r"umidade relativa do ar", name):
        return "umidade_relativa"
    if re.match(r"vento, dire[çc][ãa]o", name):
        return "vento_direcao"
    if re.match(r"vento, rajada", name):
        return "vento_rajada"
    if re.match(r"vento, velocidade", name):
        return "vento_velocidade"

Agora que temos os nomes das colunas padronizados, vamos tratar a data/hora. Os arquivos CSV do INMET-BDMEP têm duas colunas separadas para data e hora. Isso é inconveniente, pois é mais prático ter uma única coluna de data/hora. Além disso existem inconsistências nos horários, que às vezes têm minutos e às vezes não.

As três funções a seguir serão usadas para criar uma única coluna de data/hora:

def convert_dates(dates: pd.Series) -> pd.DataFrame:
    dates = dates.str.replace("/", "-")
    return dates


def convert_hours(hours: pd.Series) -> pd.DataFrame:

    def fix_hour_string(hour: str) -> str:
        if re.match(r"^\d{2}\:\d{2}$", hour):
            return hour
        else:
            return hour[:2] + ":00"

    hours = hours.apply(fix_hour_string)
    return hours


def fix_data_hora(d: pd.DataFrame) -> pd.DataFrame:
    d = d.assign(
        data_hora=pd.to_datetime(
            convert_dates(d["data"]) + " " + convert_hours(d["hora"]),
            format="%Y-%m-%d %H:%M",
        ),
    )
    d = d.drop(columns=["data", "hora"])
    return d

Existe um problema com os dados do INMET-BDMEP que é a presença de linhas vazias. Vamos remover essas linhas vazias para evitar problemas futuros. O código a seguir faz isso:

# Remove empty rows
empty_columns = [
    "precipitacao",
    "pressao_atmosferica",
    "pressao_atmosferica_maxima",
    "pressao_atmosferica_minima",
    "radiacao",
    "temperatura_ar",
    "temperatura_orvalho",
    "temperatura_maxima",
    "temperatura_minima",
    "temperatura_orvalho_maxima",
    "temperatura_orvalho_minima",
    "umidade_relativa_maxima",
    "umidade_relativa_minima",
    "umidade_relativa",
    "vento_direcao",
    "vento_rajada",
    "vento_velocidade",
]
empty_rows = data[empty_columns].isnull().all(axis=1)
data = data.loc[~empty_rows]

Problema resolvido! (•̀ᴗ•́)و ̑̑

3.4 Encapsulando em funções

Para finalizar esta seção vamos encapsular o código de leitura e tratamento em funções.

Primeiro uma função para a leitura do arquivo CSV contino no arquivo comprimido.

def read_data(filepath: Path) -> pd.DataFrame:
    d = pd.read_csv(
        filepath,
        sep=";",
        decimal=",",
        na_values="-9999",
        encoding="latin-1",
        skiprows=8,
        usecols=range(19),
    )
    d = d.rename(columns=columns_renamer)

    # Remove empty rows
    empty_columns = [
        "precipitacao",
        "pressao_atmosferica",
        "pressao_atmosferica_maxima",
        "pressao_atmosferica_minima",
        "radiacao",
        "temperatura_ar",
        "temperatura_orvalho",
        "temperatura_maxima",
        "temperatura_minima",
        "temperatura_orvalho_maxima",
        "temperatura_orvalho_minima",
        "umidade_relativa_maxima",
        "umidade_relativa_minima",
        "umidade_relativa",
        "vento_direcao",
        "vento_rajada",
        "vento_velocidade",
    ]
    empty_rows = d[empty_columns].isnull().all(axis=1)
    d = d.loc[~empty_rows]

    d = fix_data_hora(d)

    return d

Tem um problema com a função acima. Ela não lida com arquivos ZIP.

Criamos, então, a função read_zipfile para a leitura de todos os arquivos contidos no arquivo ZIP. Essa função itera sobre todos os arquivos CSV no arquivo zipado, faz a leitura usando a função read_data e os metadados usando a função read_metadata, e depois junta os dados e os metadados em um único DataFrame.

def read_zipfile(filepath: Path) -> pd.DataFrame:
    data = pd.DataFrame()
    with zipfile.ZipFile(filepath) as z:
        files = [zf for zf in z.infolist() if not zf.is_dir()]
        for zf in tqdm(files):
            d = read_data(z.open(zf.filename))
            meta = read_metadata(z.open(zf.filename))
            d = d.assign(**meta)
            data = pd.concat((data, d), ignore_index=True)
    return data

No final, basta usar essa última função definida (read_zipfile) para fazer a leitura dos arquivos ZIP baixados do site do INMET. (. ❛ ᴗ ❛.)

df = reader.read_zipfile("inmet-bdmep_2023_20240102.zip")
# 100%|████████████████████████████████████████████████████████████████████████████████| 567/567 [01:46<00:00,  5.32it/s]
df
#         precipitacao  pressao_atmosferica  pressao_atmosferica_maxima  ...  longitude  altitude  data_fundacao
# 0                0.0                887.7                       887.7  ... -47.925833   1160.96     2000-05-07
# 1                0.0                888.1                       888.1  ... -47.925833   1160.96     2000-05-07
# 2                0.0                887.8                       888.1  ... -47.925833   1160.96     2000-05-07
# 3                0.0                887.8                       887.9  ... -47.925833   1160.96     2000-05-07
# 4                0.0                887.6                       887.9  ... -47.925833   1160.96     2000-05-07
# ...              ...                  ...                         ...  ...        ...       ...            ...
# 342078           0.0                902.6                       903.0  ... -51.215833    963.00     2019-02-15
# 342079           0.0                902.2                       902.7  ... -51.215833    963.00     2019-02-15
# 342080           0.2                902.3                       902.3  ... -51.215833    963.00     2019-02-15
# 342081           0.0                903.3                       903.3  ... -51.215833    963.00     2019-02-15
# 342082           0.0                903.8                       903.8  ... -51.215833    963.00     2019-02-15

# [342083 rows x 26 columns]
df.to_csv("inmet-bdmep_2023.csv", index=False)  # Salvando o DataFrame em um arquivo CSV

4. Gráfico de exemplo

Para finalizar, nada mais satisfatório do que fazer gráficos com os dados que coletamos e tratamos. ヾ(≧▽≦*)o

Nessa parte uso o R com o pacote tidyverse para fazer um gráfico combinando a temperatura horária e a média diária em São Paulo.

library(tidyverse)

dados <- read_csv("inmet-bdmep_2023.csv")

print(names(dados))
#  [1] "precipitacao"               "pressao_atmosferica"
#  [3] "pressao_atmosferica_maxima" "pressao_atmosferica_minima"
#  [5] "radiacao"                   "temperatura_ar"
#  [7] "temperatura_orvalho"        "temperatura_maxima"
#  [9] "temperatura_minima"         "temperatura_orvalho_maxima"
# [11] "temperatura_orvalho_minima" "umidade_relativa_maxima"
# [13] "umidade_relativa_minima"    "umidade_relativa"
# [15] "vento_direcao"              "vento_rajada"
# [17] "vento_velocidade"           "data_hora"
# [19] "regiao"                     "uf"
# [21] "estacao"                    "codigo_wmo"
# [23] "latitude"                   "longitude"
# [25] "altitude"                   "data_fundacao"

print(unique(dados$regiao))
# [1] "CO" "N"  "NE" "SE" "S"

print(unique(dados$uf))
#  [1] "DF" "GO" "MS" "MT" "AC" "AM" "AP" "AL" "BA" "CE" "MA" "PB" "PE" "PI" "RN"
# [16] "SE" "PA" "RO" "RR" "TO" "ES" "MG" "RJ" "SP" "PR" "RS" "SC"

dados_sp <- dados |> filter(uf == "SP")


# Temperatura horária em São Paulo
dados_sp_h <- dados_sp |>
  group_by(data_hora) |>
  summarise(
    temperatura_ar = mean(temperatura_ar, na.rm = TRUE),
  )


# Temperatura média diária em São Paulo
dados_sp_d <- dados_sp |>
  group_by(data = floor_date(data_hora, "day")) |>
  summarise(
    temperatura_ar = mean(temperatura_ar, na.rm = TRUE),
  )


# Gráfico combinando temperatura horária e média diária em São Paulo
dados_sp_h |>
  ggplot(aes(x = data_hora, y = temperatura_ar)) +
  geom_line(
    alpha = 0.5,
    aes(
      color = "Temperatura horária"
    )
  ) +
  geom_line(
    data = dados_sp_d,
    aes(
      x = data,
      y = temperatura_ar,
      color = "Temperatura média diária"
    ),
    linewidth = 1
  ) +
  labs(
    x = "Data",
    y = "Temperatura (°C)",
    title = "Temperatura horária e média diária em São Paulo",
    color = "Variável"
  ) +
  theme_minimal() +
  theme(legend.position = "top")
ggsave("temperatura_sp.png", width = 16, height = 8, dpi = 300)


Coletando e Tratando os Dados Climáticos do INMET-BDMEP


Temperatura horária e média diária em São Paulo em 2023

5. Conclusão

Neste texto mostrei como coletar e tratar os dados climáticos do INMET-BDMEP. Os dados coletados são muito úteis para estudos e previsões nas mais variadas áreas. Com os dados tratados, é possível fazer análises e gráficos como o que mostrei no final.

Espero que tenha gostado do texto e que tenha sido útil para você.

我使用本文中展示的函數創建了一個 Python 套件。該包可在我的 Git 存儲庫中找到。如果需要,您可以下載軟體包並在自己的程式碼中使用該函數。

Git 儲存庫:https://github.com/dankkom/inmet-bdmep-data

(~ ̄▽ ̄)~

以上是收集和處理 INMET-BDMEP 氣候數據的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn