在本文中,我們將解決 Perl 每週挑戰 #288 中的兩個任務:找到最接近的回文並確定矩陣中最大連續區塊的大小。這兩種解決方案都將在 Perl 和 Go 中遞歸實作。
目錄
- 最近的回文
- 連續塊
- 結論
最近的回文
第一個任務是找到最接近的不包含自身的回文。
最接近的回文定義為最小化兩個整數之間的絕對差的回文。
如果有多個候選者,則應傳回最小的一個。
任務說明
輸入: 字串 $str,代表整數。
輸出: 最接近的回文字串。
範例
輸入:「123」
輸出:「121」輸入: "2"
輸出:「1」
有兩個最接近的回文:「1」和「3」。因此,我們返回最小的“1”。輸入:「1400」
輸出:「1441」輸入:「1001」
輸出:「999」
解決方案
Perl 實現
在此實作中,我們利用遞歸方法來尋找不等於原始數字的最接近的回文。遞歸函數探索原始數字的下限和上限:
- 它檢查目前候選(下級和上級)是否是有效的回文(且不等於原始)。
- 如果兩個候選都無效,則函數會遞歸地遞減較低的候選並遞增較高的候選,直到找到有效的回文。
這種遞歸策略有效地縮小了搜尋空間,確保我們在遵守問題限制的同時識別最接近的回文。
sub is_palindrome { my ($num) = @_; return $num eq reverse($num); } sub find_closest { my ($lower, $upper, $original) = @_; return $lower if is_palindrome($lower) && $lower != $original; return $upper if is_palindrome($upper) && $upper != $original; return find_closest($lower - 1, $upper + 1, $original) if $lower > 0; return $upper + 1; } sub closest_palindrome { my ($str) = @_; my $num = int($str); return find_closest($num - 1, $num + 1, $num); }
實施
Go 實作遵循類似的遞歸策略。它還檢查原始數字周圍的候選數,使用遞歸來調整邊界,直到找到有效的回文數。
package main import ( "strconv" ) func isPalindrome(num int) bool { reversed := 0 original := num for num > 0 { digit := num % 10 reversed = reversed*10 + digit num /= 10 } return original == reversed } func findClosest(lower, upper, original int) string { switch { case isPalindrome(lower) && lower != original: return strconv.Itoa(lower) case isPalindrome(upper) && upper != original: return strconv.Itoa(upper) case lower > 0: return findClosest(lower-1, upper+1, original) default: return strconv.Itoa(upper + 1) } } func closestPalindrome(str string) string { num, _ := strconv.Atoi(str) return findClosest(num-1, num+1, num) }
Hier ist die erweiterte Definition für den 連續塊:
連續區塊
第二個任務是決定給定矩陣中最大連續區塊的大小,其中所有單元格都包含 x 或 o。
連續區塊由包含相同符號的元素組成,這些元素與區塊中的其他元素共用邊緣(而不僅僅是角),從而建立一個連接區域。
任務說明
輸入: 包含 x 和 o 的矩形矩陣。
輸出:最大連續塊的大小。
範例
-
輸入:
[ ['x', 'x', 'x', 'x', 'o'], ['x', 'o', 'o', 'o', 'o'], ['x', 'o', 'o', 'o', 'o'], ['x', 'x', 'x', 'o', 'o'], ]
輸出: 11
有一個包含 x 的 9 個連續單元格的區塊和一個包含 o 的 11 個連續單元格的區塊。
-
輸入:
[ ['x', 'x', 'x', 'x', 'x'], ['x', 'o', 'o', 'o', 'o'], ['x', 'x', 'x', 'x', 'o'], ['x', 'o', 'o', 'o', 'o'], ]
輸出: 11
有一個包含 x 的 11 個連續單元格的區塊和一個包含 o 的 9 個連續單元格的區塊。
-
輸入:
[ ['x', 'x', 'x', 'o', 'o'], ['o', 'o', 'o', 'x', 'x'], ['o', 'x', 'x', 'o', 'o'], ['o', 'o', 'o', 'x', 'x'], ]
輸出: 7
有一個包含 o 的 7 個連續單元格塊、另外兩個包含 o 的 2 單元格塊、三個包含 x 的 2 單元格塊和一個包含 x 的 3 單元格塊。
解決方案
Perl 實現
在此實作中,我們利用遞歸深度優先搜尋(DFS)方法來確定矩陣中最大連續區塊的大小。主函數初始化一個存取矩陣來追蹤哪些單元已被探索。它迭代每個單元格,每當遇到未訪問的單元格時調用遞歸 DFS 函數。
DFS 函數探索目前儲存格的所有四個可能的方向(上、下、左、右)。它透過在共享相同符號且尚未被存取的相鄰單元上遞歸地呼叫自身來計算連續塊的大小。這種遞歸方法有效地聚合了區塊的大小,同時確保每個單元僅被計數一次。
sub largest_contiguous_block { my ($matrix) = @_; my $rows = @$matrix; my $cols = @{$matrix->[0]}; my @visited = map { [(0) x $cols] } 1..$rows; my $max_size = 0; for my $r (0 .. $rows - 1) { for my $c (0 .. $cols - 1) { my $symbol = $matrix->[$r][$c]; my $size = dfs($matrix, \@visited, $r, $c, $symbol); $max_size = $size if $size > $max_size; } } return $max_size; } sub dfs { my ($matrix, $visited, $row, $col, $symbol) = @_; return 0 if $row = @$matrix || $col = @{$matrix->[0]} || $visited->[$row][$col] || $matrix->[$row][$col] ne $symbol; $visited->[$row][$col] = 1; my $count = 1; $count += dfs($matrix, $visited, $row + 1, $col, $symbol); $count += dfs($matrix, $visited, $row - 1, $col, $symbol); $count += dfs($matrix, $visited, $row, $col + 1, $symbol); $count += dfs($matrix, $visited, $row, $col - 1, $symbol); return $count; }
實施
Go 實作反映了這種遞歸 DFS 策略。它類似地遍歷矩陣並使用遞歸來探索具有相同符號的連續單元。
package main func largestContiguousBlock(matrix [][]rune) int { rows := len(matrix) if rows == 0 { return 0 } cols := len(matrix[0]) visited := make([][]bool, rows) for i := range visited { visited[i] = make([]bool, cols) } maxSize := 0 for r := 0; r maxSize { maxSize = size } } } return maxSize } func dfs(matrix [][]rune, visited [][]bool, row, col int, symbol rune) int { if row = len(matrix) || col = len(matrix[0]) || visited[row][col] || matrix[row][col] != symbol { return 0 } visited[row][col] = true count := 1 count += dfs(matrix, visited, row+1, col, symbol) count += dfs(matrix, visited, row-1, col, symbol) count += dfs(matrix, visited, row, col+1, symbol) count += dfs(matrix, visited, row, col-1, symbol) return count }
Conclusion
In this article, we explored two intriguing challenges from the Perl Weekly Challenge #288: finding the closest palindrome and determining the size of the largest contiguous block in a matrix.
For the first task, both the Perl and Go implementations effectively utilized recursion to navigate around the original number, ensuring the closest palindrome was found efficiently.
In the second task, the recursive depth-first search approach in both languages allowed for a thorough exploration of the matrix, resulting in an accurate count of the largest contiguous block of identical symbols.
These challenges highlight the versatility of recursion as a powerful tool in solving algorithmic problems, showcasing its effectiveness in both Perl and Go. If you're interested in further exploration or have any questions, feel free to reach out!
You can find the complete code, including tests, on GitHub.
以上是深入研究:回文和連續區塊的遞歸解決方案的詳細內容。更多資訊請關注PHP中文網其他相關文章!

掌握Go語言中的strings包可以提高文本處理能力和開發效率。 1)使用Contains函數檢查子字符串,2)用Index函數查找子字符串位置,3)Join函數高效拼接字符串切片,4)Replace函數替換子字符串。注意避免常見錯誤,如未檢查空字符串和大字符串操作性能問題。

你應該關心Go語言中的strings包,因為它能簡化字符串操作,使代碼更清晰高效。 1)使用strings.Join高效拼接字符串;2)用strings.Fields按空白符分割字符串;3)通過strings.Index和strings.LastIndex查找子串位置;4)用strings.ReplaceAll進行字符串替換;5)利用strings.Builder進行高效字符串拼接;6)始終驗證輸入以避免意外結果。

thestringspackageingoisesential forefficientstringManipulation.1)itoffersSimpleyetpoperfulfunctionsFortaskSlikeCheckingSslingSubstringsStringStringsStringsandStringsN.2)ithandhishiCodeDewell,withFunctionsLikestrings.fieldsfieldsfieldsfordsforeflikester.fieldsfordsforwhitespace-fieldsforwhitespace-separatedvalues.3)3)

WhendecidingbetweenGo'sbytespackageandstringspackage,usebytes.Bufferforbinarydataandstrings.Builderforstringoperations.1)Usebytes.Bufferforworkingwithbyteslices,binarydata,appendingdifferentdatatypes,andwritingtoio.Writer.2)Usestrings.Builderforstrin

Go的strings包提供了多種字符串操作功能。 1)使用strings.Contains檢查子字符串。 2)用strings.Split將字符串分割成子字符串切片。 3)通過strings.Join合併字符串。 4)用strings.TrimSpace或strings.Trim去除字符串首尾的空白或指定字符。 5)用strings.ReplaceAll替換所有指定子字符串。 6)使用strings.HasPrefix或strings.HasSuffix檢查字符串的前綴或後綴。

使用Go語言的strings包可以提升代碼質量。 1)使用strings.Join()優雅地連接字符串數組,避免性能開銷。 2)結合strings.Split()和strings.Contains()處理文本,注意大小寫敏感問題。 3)避免濫用strings.Replace(),考慮使用正則表達式進行大量替換。 4)使用strings.Builder提高頻繁拼接字符串的性能。

Go的bytes包提供了多種實用的函數來處理字節切片。 1.bytes.Contains用於檢查字節切片是否包含特定序列。 2.bytes.Split用於將字節切片分割成smallerpieces。 3.bytes.Join用於將多個字節切片連接成一個。 4.bytes.TrimSpace用於去除字節切片的前後空白。 5.bytes.Equal用於比較兩個字節切片是否相等。 6.bytes.Index用於查找子切片在largerslice中的起始索引。

theEncoding/binarypackageingoisesenebecapeitProvidesAstandArdArdArdArdArdArdArdArdAndWriteBinaryData,確保Cross-cross-platformCompatibilitiational and handhandlingdifferentendenness.itoffersfunctionslikeread,寫下,寫,dearte,readuvarint,andwriteuvarint,andWriteuvarIntforPreciseControloverBinary


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver Mac版
視覺化網頁開發工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver CS6
視覺化網頁開發工具