介紹
我們將創建一個能夠搜尋維基百科並根據找到的資訊回答問題的人工智慧代理。該 ReAct(理性與行動)代理程式使用 Google Generative AI API 來處理查詢並產生回應。我們的代理商將能夠:
- 搜尋維基百科取得相關資訊。
- 從維基百科頁面擷取特定部分。
- 對收集到的資訊進行推理並制定答案。
[2] 什麼是ReAct代理?
ReAct Agent 是一種遵循反射-操作循環的特定類型的代理。它根據可用資訊和它可以執行的操作反映當前任務,然後決定採取哪個操作或是否結束任務。
[3] 規劃代理
3.1 所需工具
- Node.js
- 用於 HTTP 請求的 Axios 庫
- Google 生成式 AI API (gemini-1.5-flash)
- 維基百科 API
3.2 代理結構
我們的 ReAct Agent 將有三個主要狀態:
- 思想(反思)
- 行動(執行)
- 答案(回覆)
[4] 實作代理
讓我們逐步建立 ReAct Agent,突出顯示每個狀態。
4.1 初始設定
首先,設定專案並安裝依賴項:
mkdir react-agent-project cd react-agent-project npm init -y npm install axios dotenv @google/generative-ai
在專案根目錄建立一個 .env 檔案:
GOOGLE_AI_API_KEY=your_api_key_here
4.2 建立Tools.js文件
使用以下內容建立 Tools.js:
const axios = require("axios"); class Tools { static async wikipedia(q) { try { const response = await axios.get("https://en.wikipedia.org/w/api.php", { params: { action: "query", list: "search", srsearch: q, srwhat: "text", format: "json", srlimit: 4, }, }); const results = await Promise.all( response.data.query.search.map(async (searchResult) => { const sectionResponse = await axios.get( "https://en.wikipedia.org/w/api.php", { params: { action: "parse", pageid: searchResult.pageid, prop: "sections", format: "json", }, }, ); const sections = Object.values( sectionResponse.data.parse.sections, ).map((section) => `${section.index}, ${section.line}`); return { pageTitle: searchResult.title, snippet: searchResult.snippet, pageId: searchResult.pageid, sections: sections, }; }), ); return results .map( (result) => `Snippet: ${result.snippet}\nPageId: ${result.pageId}\nSections: ${JSON.stringify(result.sections)}`, ) .join("\n\n"); } catch (error) { console.error("Error fetching from Wikipedia:", error); return "Error fetching data from Wikipedia"; } } static async wikipedia_with_pageId(pageId, sectionId) { if (sectionId) { const response = await axios.get("https://en.wikipedia.org/w/api.php", { params: { action: "parse", format: "json", pageid: parseInt(pageId), prop: "wikitext", section: parseInt(sectionId), disabletoc: 1, }, }); return Object.values(response.data.parse?.wikitext ?? {})[0]?.substring( 0, 25000, ); } else { const response = await axios.get("https://en.wikipedia.org/w/api.php", { params: { action: "query", pageids: parseInt(pageId), prop: "extracts", exintro: true, explaintext: true, format: "json", }, }); return Object.values(response.data?.query.pages)[0]?.extract; } } } module.exports = Tools;
4.3 建立ReactAgent.js文件
使用以下內容建立 ReactAgent.js:
require("dotenv").config(); const { GoogleGenerativeAI } = require("@google/generative-ai"); const Tools = require("./Tools"); const genAI = new GoogleGenerativeAI(process.env.GOOGLE_AI_API_KEY); class ReActAgent { constructor(query, functions) { this.query = query; this.functions = new Set(functions); this.state = "THOUGHT"; this._history = []; this.model = genAI.getGenerativeModel({ model: "gemini-1.5-flash", temperature: 2, }); } get history() { return this._history; } pushHistory(value) { this._history.push(`\n ${value}`); } async run() { this.pushHistory(`**Task: ${this.query} **`); try { return await this.step(); } catch (e) { if (e.message.includes("exhausted")) { return "Sorry, I'm exhausted, I can't process your request anymore. >>>>>>>", finalAnswer); return finalAnswer; } } module.exports = ReActAgent;
4.4 運行代理程式(index.js)
使用以下內容建立index.js:
const ReActAgent = require("./ReactAgent.js"); async function main() { const query = "What does England border with?"; const functions = [ [ "wikipedia", "params: query", "Semantic Search Wikipedia API for snippets, pageIds and sectionIds >> \n ex: Date brazil has been colonized? \n Brazil was colonized at 1500, pageId, sections : []", ], [ "wikipedia_with_pageId", "params : pageId, sectionId", "Search Wikipedia API for data using a pageId and a sectionIndex as params. \n ex: 1500, 1234 \n Section information about blablalbal", ], ]; const agent = new ReActAgent(query, functions); try { const result = await agent.run(); console.log("THE AGENT RETURN THE FOLLOWING >>>", result); } catch (e) { console.log("FAILED TO RUN T.T", e); } } main().catch(console.error);
[5] 維基百科部分如何運作
與維基百科的互動主要分為兩個步驟:
-
初始搜尋(維基百科功能):
- 向維基百科搜尋 API 發出請求。
- 最多回傳 4 個相關的查詢結果。
- 對於每個結果,它都會取得頁面的各個部分。
-
詳細搜尋(wikipedia_with_pageId函數):
- 使用頁面 ID 和部分 ID 來取得特定內容。
- 傳回請求部分的文字。
此流程允許代理人首先獲得與查詢相關的主題的概述,然後根據需要深入研究特定部分。
[6] 執行流程範例
- 使用者提出問題。
- 智能體進入思考狀態並反思問題。
- 它決定搜尋維基百科並進入 ACTION 狀態。
- 執行wikipedia函數並取得結果。
- 返回THOUGHT狀態反思結果。
- 可能決定搜尋更多詳細資訊或不同的方法。
- 根據需要重複思想和行動循環。
- 當它有足夠的資訊時,它進入ANSWER狀態。
- 根據收集到的所有資訊產生最終答案。
- 只要維基百科沒有可收集的數據,就會進入無限循環。用計時器修復它=P
[7] 最後的考慮
- 模組化結構可以輕鬆新增工具或 API。
- 實作錯誤處理和時間/迭代限制非常重要,以避免無限循環或過度資源使用。
- 使用溫度:99999 哈哈
以上是使用 nodeJS 從頭開始建立 ReAct Agent(維基百科搜尋)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和JavaScript的主要區別在於類型系統和應用場景。 1.Python使用動態類型,適合科學計算和數據分析。 2.JavaScript採用弱類型,廣泛用於前端和全棧開發。兩者在異步編程和性能優化上各有優勢,選擇時應根據項目需求決定。

選擇Python還是JavaScript取決於項目類型:1)數據科學和自動化任務選擇Python;2)前端和全棧開發選擇JavaScript。 Python因其在數據處理和自動化方面的強大庫而備受青睞,而JavaScript則因其在網頁交互和全棧開發中的優勢而不可或缺。

Python和JavaScript各有優勢,選擇取決於項目需求和個人偏好。 1.Python易學,語法簡潔,適用於數據科學和後端開發,但執行速度較慢。 2.JavaScript在前端開發中無處不在,異步編程能力強,Node.js使其適用於全棧開發,但語法可能複雜且易出錯。

javascriptisnotbuiltoncorc; sanInterpretedlanguagethatrunsonenginesoftenwritteninc.1)JavascriptwasdesignedAsignedAsalightWeight,drackendedlanguageforwebbrowsers.2)Enginesevolvedfromsimpleterterpretpretpretpretpreterterpretpretpretpretpretpretpretpretpretcompilerers,典型地,替代品。

JavaScript可用於前端和後端開發。前端通過DOM操作增強用戶體驗,後端通過Node.js處理服務器任務。 1.前端示例:改變網頁文本內容。 2.後端示例:創建Node.js服務器。

選擇Python還是JavaScript應基於職業發展、學習曲線和生態系統:1)職業發展:Python適合數據科學和後端開發,JavaScript適合前端和全棧開發。 2)學習曲線:Python語法簡潔,適合初學者;JavaScript語法靈活。 3)生態系統:Python有豐富的科學計算庫,JavaScript有強大的前端框架。

JavaScript框架的強大之處在於簡化開發、提升用戶體驗和應用性能。選擇框架時應考慮:1.項目規模和復雜度,2.團隊經驗,3.生態系統和社區支持。

引言我知道你可能會覺得奇怪,JavaScript、C 和瀏覽器之間到底有什麼關係?它們之間看似毫無關聯,但實際上,它們在現代網絡開發中扮演著非常重要的角色。今天我們就來深入探討一下這三者之間的緊密聯繫。通過這篇文章,你將了解到JavaScript如何在瀏覽器中運行,C 在瀏覽器引擎中的作用,以及它們如何共同推動網頁的渲染和交互。 JavaScript與瀏覽器的關係我們都知道,JavaScript是前端開發的核心語言,它直接在瀏覽器中運行,讓網頁變得生動有趣。你是否曾經想過,為什麼JavaScr


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3漢化版
中文版,非常好用

WebStorm Mac版
好用的JavaScript開發工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

禪工作室 13.0.1
強大的PHP整合開發環境