快速開發和部署互動式應用程式的能力是非常寶貴的。 Streamlit 是一個強大的工具,使資料科學家和開發人員能夠使用最少的程式碼建立直覺的 Web 應用程式。再加上預先安裝了基本資料科學庫的 Python 資料科學筆記本 Docker 映像,為建立 Streamlit 應用程式建立一個強大的環境從未如此簡單。
什麼是 Streamlit?
Streamlit 是一個開源 Python 函式庫,可簡化為資料科學和機器學習專案建立互動式 Web 應用程式的過程。借助 Streamlit,您可以在短短幾分鐘內將資料腳本轉換為可共享的 Web 應用程序,全部使用純 Python。無需前端開發技能或 Web 框架(如 Flask 或 Django)知識。
Streamlit 的主要功能包括:
- 易於使用:使用簡單的 API 透過幾行程式碼建立應用程式。
- 互動式小工具:合併滑桿、按鈕、文字輸入等,使您的應用程式具有互動性。
- 即時更新:當您的資料或程式碼發生變更時自動更新應用程式內容。
- 資料視覺化:與 Matplotlib、Seaborn、Plotly 和 Altair 等函式庫無縫集成,實現豐富的視覺化效果。
- 部署就緒:在各種平台上輕鬆部署應用程序,包括 Streamlit Cloud、Heroku 和 AWS。
為什麼將 Streamlit 用於資料應用程式?
Streamlit 具有多項優勢,使其成為開發資料應用程式的理想選擇:
- 快速原型製作:快速將想法轉化為功能性應用程序,無需擔心底層網路基礎設施。
- Pythonic 語法:完全用 Python 編寫應用程序,利用您現有的技能,無需學習 HTML、CSS 或 JavaScript。
- 互動式資料探索:使用戶能夠透過小部件與資料交互,從而更輕鬆地探索資料集和模型結果。
- 社區和支持:受益於不斷發展的社區,該社區為豐富的插件和擴展生態系統做出了貢獻。
- 開源:修改和擴充庫以滿足您的需求,並確保持續的開發和支援。
透過使用 Streamlit,資料科學家可以專注於資料分析和模型構建,同時為利害關係人提供互動式工具來視覺化和理解結果。
Python 資料科學筆記本 Docker 映像概述
Python 資料科學筆記本 Docker 映像 是一個 Docker 容器,旨在簡化資料科學工作流程。它由最小的 python:3.9-slim 基礎映像建構而成,包括一套全面的預安裝庫,可滿足資料科學的各個方面的需求,包括資料操作、機器學習、視覺化和資料庫連接。
Hauptmerkmale:
- Jupyter Notebook-Zugriff: Führen Sie Jupyter Notebooks über Ihren Webbrowser aus und greifen Sie darauf zu, was eine interaktive Codierungsumgebung ermöglicht.
-
Vorinstallierte Bibliotheken:
- Datenmanipulation: Pandas, Numpy, Polars, Dask, Ibis, Pyiceberg, Datafusion, SQLFrame
- Maschinelles Lernen: scikit-learn, tensorflow, Torch, xgboost, lightgbm
- Visualisierung: Matplotlib, Seaborn, Plotly
- Datenbankzugriff: psycopg2-binary, mysqlclient, sqlalchemy, duckdb, pyarrow
- Objektspeicher: boto3, s3fs, minio
- Dienstprogramme: openpyxl, request, beautifulsoup4, lxml, pyspark, dremio-simple-query
- Benutzerkonfiguration: Arbeitet unter dem Benutzer pydata, wobei das Home-Verzeichnis auf /home/pydata eingestellt ist. Das Arbeitsverzeichnis ist /home/pydata/work.
- Port-Offenlegung: Macht Port 8888 verfügbar, um den Zugriff auf den Jupyter Notebook-Server zu ermöglichen.
Vorteile:
- Konsistenz: Stellen Sie eine konsistente Entwicklungsumgebung über verschiedene Maschinen und Teammitglieder hinweg sicher.
- Isolierung: Vermeiden Sie Konflikte mit anderen Projekten und Abhängigkeiten auf Ihrem lokalen Computer.
- Portabilität: Verschieben Sie Ihre Entwicklungsumgebung ganz einfach zwischen Systemen oder stellen Sie sie auf einem Server bereit.
- Erweiterbar: Passen Sie das Docker-Image an, indem Sie nach Bedarf weitere Bibliotheken oder Konfigurationen hinzufügen.
Durch die Verwendung dieses Docker-Images können Sie Zeit bei der Einrichtung sparen und sich auf die Entwicklung Ihrer Streamlit-Anwendungen konzentrieren, da Sie wissen, dass Ihnen alle erforderlichen Tools und Bibliotheken zur Verfügung stehen.
Einrichten der Umgebung
Um mit der Erstellung von Streamlit-Anwendungen mit dem Python Data Science Notebook Docker Image zu beginnen, müssen Sie Ihre Umgebung einrichten. Dazu gehört die Installation von Docker, das Abrufen des Docker-Images, das Ausführen des Containers und die Überprüfung, ob Streamlit installiert ist und ordnungsgemäß funktioniert.
Docker installieren
Wenn Docker noch nicht auf Ihrem Computer installiert ist, führen Sie die folgenden Schritte aus:
- Docker Desktop herunterladen:
- Windows und macOS: Besuchen Sie die Docker Desktop-Downloadseite und laden Sie das Installationsprogramm für Ihr Betriebssystem herunter.
- Linux: Weitere Informationen finden Sie in den offiziellen Docker-Installationshandbüchern für Ubuntu, Debian, Fedora oder Ihre spezifische Distribution.
- Docker installieren:
- Führen Sie das Installationsprogramm aus und befolgen Sie die Anweisungen auf dem Bildschirm.
- Befolgen Sie für Linux die Befehlszeilenanweisungen im Installationshandbuch für Ihre Distribution.
- Überprüfen Sie die Installation:
Öffnen Sie ein Terminal oder eine Eingabeaufforderung und führen Sie Folgendes aus:
docker --version
Sie sollten die Docker-Versionsinformationen sehen, die bestätigen, dass Docker installiert ist.
Das Docker-Image alexmerced/datanotebook abrufen
Das Docker-Image alexmerced/datanotebook enthält eine umfassende Python-Umgebung mit vorinstallierten Data-Science-Bibliotheken.
Ziehen Sie das Docker-Image:
Führen Sie in Ihrem Terminal Folgendes aus:
docker pull alexmerced/datanotebook
Dieser Befehl lädt das Image vom Docker Hub auf Ihren lokalen Computer herunter.
Bestätigen Sie, dass das Bild abgerufen wird:
Listen Sie alle Docker-Images auf Ihrem System auf:
docker images
Unter den Bildern sollte alexmerced/datanotebook aufgeführt sein.
Ausführen des Docker-Containers mit Jupyter Notebook Access
Führen Sie nun einen Docker-Container aus dem Image aus und greifen Sie auf den Jupyter Notebook-Server zu.
Navigieren Sie zu Ihrem Arbeitsverzeichnis
Öffnen Sie ein Terminal und wechseln Sie in das Verzeichnis, in dem sich Ihre Jupyter Notebooks und Streamlit-Apps befinden sollen:
cd /path/to/your/project
Führen Sie den Docker-Container aus:
Führen Sie den folgenden Befehl aus:
docker run -p 8888:8888 -p 8501:8501 -v $(pwd):/home/pydata/work alexmerced/datanotebook
- Portzuordnung: -p 8888:8888 ordnet den Port 8888 des Containers Ihrem lokalen Computer zu und ermöglicht so den Zugriff auf Jupyter Notebook. -p 8501:8501 ordnet den Port 8501 des Containers Ihrem lokalen Computer zu und ermöglicht so den Zugriff auf Streamlit-Apps.
- Volume-Mounting: -v $(pwd):/home/pydata/work mountet Ihr aktuelles Verzeichnis im Container und ermöglicht so die Dateifreigabe zwischen Ihrem Host und dem Container. ### Zugriff auf Jupyter Notebook:
Öffnen Sie Ihren Webbrowser und navigieren Sie zu http://localhost:8888.
Sie sollten die Jupyter Notebook-Benutzeroberfläche sehen, ohne dass ein Passwort oder Token erforderlich ist.
Überprüfen der Installation von Streamlit im Container
Stellen Sie sicher, dass Streamlit im Docker-Container installiert ist und ordnungsgemäß funktioniert.
Open a New Terminal in Jupyter Notebook.
In the Jupyter interface, click on the New dropdown menu and select Terminal.
In the terminal, run:
streamlit --version
If Streamlit is installed, the version number will be displayed.
If not installed, install it using:
pip install streamlit
Create a Test Streamlit App:
In the Jupyter interface, click on New and select Text File.
Save the file as app.py in your working directory.
Add the following code to app.py:
import streamlit as st st.title("Streamlit Test App") st.write("Congratulations! Streamlit is working inside the Docker container.")
Save the file.
Run the Streamlit App:
In the Jupyter terminal, execute:
streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false --server.port 8501 --server.address 0.0.0.0
Server Flags Explained:
- --server.enableCORS false: Disables Cross-Origin Resource Sharing protection.
- --server.enableXsrfProtection false: Disables Cross-Site Request Forgery protection.
- --server.port 8501: Runs the app on port 8501.
- --server.address 0.0.0.0: Makes the server accessible externally.
Access the Streamlit App:
Open a new tab in your web browser and navigate to http://localhost:8501.
You should see the Streamlit app displaying the title and message.
Optional: Keep Streamlit Running in the Background:
To keep the Streamlit app running without occupying the terminal, you can run it in the background using nohup:
nohup streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false --server.port 8501 --server.address 0.0.0.0 &
Exiting the Docker Container
In the Terminal Running the Container:
Press Ctrl + C to stop the container.
Alternatively, Use Docker Commands:
- List running containers
docker ps
Stop the container using its Container ID:
docker stop <container_id> </container_id>
Summary
You've successfully set up your environment:
- Installed Docker (if necessary).
- Pulled the alexmerced/datanotebook Docker image.
- Ran the Docker container with Jupyter Notebook access.
- Verified that Streamlit is installed and operational within the container.
With this setup, you're ready to develop and run Streamlit applications in a consistent and isolated environment, leveraging the powerful tools provided by the Docker image.
Getting Started with Streamlit
With your environment set up, it's time to dive into Streamlit and start building interactive applications. This section will guide you through creating your first Streamlit app, understanding the basic structure of a Streamlit script, and running Streamlit apps from within the Jupyter Notebook provided by the Docker container.
Creating Your First Streamlit App
Let's begin by creating a simple Streamlit application that displays text and a chart.
- Create a New Python Script:
- In the Jupyter Notebook interface, click on New and select Text File.
- Save the file as app.py in your working directory (/home/pydata/work).
- Write the Streamlit Code:
Open app.py and add the following code:
import streamlit as st import pandas as pd import numpy as np st.title("My First Streamlit App") st.write("Welcome to my first Streamlit application!") # Create a random dataframe df = pd.DataFrame( np.random.randn(20, 3), columns=['Column A', 'Column B', 'Column C'] ) st.write("Here is a random dataframe:") st.dataframe(df) st.write("Line chart of the data:") st.line_chart(df)
Explanation:
- Imports necessary libraries.
- Sets the title and writes introductory text.
- Generates a random DataFrame.
- Displays the DataFrame and a line chart based on the data.
Save the Script:
- Ensure that you save app.py after adding the code.
Understanding the Basic Structure of a Streamlit Script
A Streamlit script is a standard Python script with the streamlit library functions to create interactive elements.
- Import Streamlit:
import streamlit as st
Set the Title and Headers:
st.title("App Title") st.header("This is a header") st.subheader("This is a subheader")
Write Text:
st.text("This is a simple text.") st.markdown("This is a text with **markdown** formatting.")
Display Data:
st.dataframe(df) # Displays an interactive table st.table(df) # Displays a static table
Display Charts:
st.line_chart(data) st.bar_chart(data) st.area_chart(data)
Add Interactive Widgets:
name = st.text_input("Enter your name:") st.write(f"Hello, {name}!") age = st.slider("Select your age:", 0, 100) st.write(f"You are {age} years old.")
Layout Elements:
with st.sidebar: st.write("This is the sidebar.") col1, col2 = st.columns(2) col1.write("Content in column 1") col2.write("Content in column 2")
Running Streamlit Apps from Within the Jupyter Notebook
To run your Streamlit app within the Docker container and access it from your host machine:
Open a Terminal in Jupyter Notebook:
In the Jupyter interface, click on New and select Terminal.
Navigate to the Working Directory:
cd /home/pydata/work
Run the Streamlit App:
Execute the following command:
streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false --server.port 8501 --server.address 0.0.0.0
Explanation of Flags:
- --server.enableCORS false: Disables Cross-Origin Resource Sharing protection.
- --server.enableXsrfProtection false: Disables Cross-Site Request Forgery protection.
- --server.port 8501: Sets the port to 8501.
- --server.address 0.0.0.0: Makes the app accessible externally.
Access the Streamlit App:
- Open your web browser and navigate to http://localhost:8501.
You should see your Streamlit app running.
Interact with the App:
- Modify app.py to add more features or interactive elements.
- Save the changes, and the app will automatically reload in the browser.
Tips for Running Streamlit in Docker
Expose the Correct Port:
When running the Docker container, ensure you expose the port used by Streamlit. If you use port 8501, run the container with:
docker run -p 8888:8888 -p 8501:8501 -v $(pwd):/home/pydata/work alexmerced/datanotebook
Running Multiple Apps:
Use different ports for each app and expose them accordingly.
Background Execution:
To run the Streamlit app without tying up the terminal, use:
nohup streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false --server.port 8501 --server.address 0.0.0.0 &
This runs the app in the background and outputs logs to nohup.out.
Summary
In this section, you:
- Created your first Streamlit app using the pre-configured Docker environment.
- Learned about the basic structure and components of a Streamlit script.
- Ran the Streamlit app from within the Jupyter Notebook environment.
- Accessed and interacted with the app via your web browser.
With these foundational skills, you're ready to explore more advanced features of Streamlit to build sophisticated data applications.
Building Interactive Data Visualizations
Data visualization is a crucial aspect of data analysis and communication. Streamlit simplifies the process of creating interactive and dynamic visualizations that can help users explore and understand data more effectively. In this section, we'll explore how to use Streamlit's built-in functions and integrate popular visualization libraries to build interactive data visualizations.
Using Streamlit's Built-in Chart Functions
Streamlit provides easy-to-use functions for creating basic charts directly from data structures like Pandas DataFrames and NumPy arrays.
Line Chart
import streamlit as st import pandas as pd import numpy as np # Generate random data data = np.random.randn(100, 3) columns = ['Feature A', 'Feature B', 'Feature C'] df = pd.DataFrame(data, columns=columns) # Display line chart st.line_chart(df)
Explanation: The st.line_chart() function takes a DataFrame or array-like object and renders an interactive line chart.
Bar Chart
# Display bar chart st.bar_chart(df)
Explanation: st.bar_chart() displays a bar chart. It's useful for categorical data or comparing different groups.
Area Chart
# Display area chart st.area_chart(df)
Explanation: st.area_chart() creates an area chart, which is similar to a line chart but with the area below the line filled.
Customizing Charts with Altair
For more advanced visualizations, Streamlit supports libraries like Altair, which provides a declarative statistical visualization library for Python.
Creating an Altair Chart
import altair as alt # Create an Altair chart chart = alt.Chart(df.reset_index()).mark_circle(size=60).encode( x='index', y='Feature A', color='Feature B', tooltip=['Feature A', 'Feature B', 'Feature C'] ).interactive() st.altair_chart(chart, use_container_width=True)
Explanation: This code creates an interactive scatter plot using Altair, where you can hover over points to see tooltips.
Interactive Widgets for User Input
Streamlit allows you to add widgets that enable users to interact with your visualizations.
Adding a Slider
# Slider to select number of data points num_points = st.slider('Select number of data points', min_value=10, max_value=100, value=50) # Generate data based on slider data = np.random.randn(num_points, 3) df = pd.DataFrame(data, columns=columns) # Display updated chart st.line_chart(df)
Explanation: The slider widget allows users to select the number of data points, and the chart updates accordingly.
Selectbox for Options
# Selectbox to choose a feature feature = st.selectbox('Select a feature to display', columns) # Display the selected feature st.line_chart(df[feature])
Explanation: The selectbox lets users choose which feature to visualize.
Integrating Plotly for Advanced Visualizations
Plotly is another powerful library for creating interactive graphs.
Plotly Example
import plotly.express as px # Create a Plotly figure fig = px.scatter(df, x='Feature A', y='Feature B', size='Feature C', color='Feature C', hover_name='Feature C') # Display the Plotly figure in Streamlit st.plotly_chart(fig, use_container_width=True)
Explanation: This code creates an interactive scatter plot with Plotly, which includes zooming, panning, and tooltips.
Combining Widgets and Visualizations
You can combine multiple widgets and charts to create a rich interactive experience.
Example: Interactive Data Filtering
# Multiselect to choose features selected_features = st.multiselect('Select features to visualize', columns, default=columns) # Checkbox to toggle data normalization normalize = st.checkbox('Normalize data') # Process data based on user input if normalize: df_normalized = (df - df.mean()) / df.std() data_to_plot = df_normalized[selected_features] else: data_to_plot = df[selected_features] # Display line chart of selected features st.line_chart(data_to_plot)
Explanation: Users can select which features to visualize and whether to normalize the data, and the chart updates accordingly.
Best Practices for Interactive Visualizations
- Limit Data Size: Large datasets can slow down your app. Consider sampling or aggregating data.
- Use Caching: Use @st.cache_data decorator to cache data loading and computation functions.
- Provide Instructions: Use st.markdown() or st.write() to guide users on how to interact with your app.
- Optimize Layout: Organize widgets and charts using columns and expanders for a clean interface.
Example of Layout Optimization
# Create columns col1, col2 = st.columns(2) with col1: st.header('User Inputs') # Add widgets here num_points = st.slider('Number of points', 10, 100, 50) feature = st.selectbox('Feature', columns) with col2: st.header('Visualization') # Generate and display chart data = np.random.randn(num_points, len(columns)) df = pd.DataFrame(data, columns=columns) st.line_chart(df[feature])
Explanation: This layout separates user inputs and visualizations into two columns, making the app more organized.
Summary
In this section, you've learned how to:
- Use Streamlit's built-in chart functions to create quick visualizations.
- Customize charts using Altair and Plotly for more advanced visualizations.
- Add interactive widgets like sliders and selectboxes to make your visualizations dynamic.
- Combine widgets and charts to build a user-friendly data exploration tool.
By leveraging these features, you can create powerful interactive applications that make data exploration and analysis more accessible to your audience.
Advanced Streamlit Features
As you become more familiar with Streamlit, you'll discover a wealth of advanced features that allow you to build more sophisticated and powerful applications. In this section, we'll delve into some of these capabilities, including state management, dynamic content creation, file handling, and performance optimization through caching.
State Management with st.session_state
Streamlit runs your script from top to bottom every time a user interacts with a widget. To maintain state across these reruns, you can use st.session_state, which is a dictionary-like object that persists throughout the user's session.
Example: Counter Application
import streamlit as st # Initialize counter in session state if 'counter' not in st.session_state: st.session_state.counter = 0 # Increment counter on button click if st.button('Increment'): st.session_state.counter += 1 st.write(f"Counter value: {st.session_state.counter}")
Explanation: The counter value is stored in st.session_state.counter, ensuring it persists across interactions.
Dynamic Content with st.expander and st.tabs
Streamlit provides layout elements to organize content and improve user experience.
Using st.expander
import streamlit as st st.write("This is visible content") with st.expander("Click to expand"): st.write("This content is hidden by default")
Explanation: st.expander creates a collapsible section that users can expand or collapse.
Using st.tabs
import streamlit as st tab1, tab2 = st.tabs(["Tab 1", "Tab 2"]) with tab1: st.write("Content in Tab 1") with tab2: st.write("Content in Tab 2")
Explanation: st.tabs allows you to organize content into tabs for better navigation.
Uploading and Handling Files with st.file_uploader
Allow users to upload files directly into your app for processing.
Example: CSV File Uploader
import streamlit as st import pandas as pd uploaded_file = st.file_uploader("Choose a CSV file", type="csv") if uploaded_file is not None: df = pd.read_csv(uploaded_file) st.write("Uploaded Data:") st.dataframe(df)
Explanation: Users can upload a CSV file, which the app reads and displays as a DataFrame.
Caching with @st.cache_data for Performance Optimization
Heavy computations or data loading can slow down your app. Use caching to store results and avoid redundant processing.
Using @st.cache_data
import streamlit as st import pandas as pd @st.cache_data def load_data(url): return pd.read_csv(url) data_url = 'https://path-to-large-dataset.csv' df = load_data(data_url) st.write("Data loaded successfully") st.dataframe(df.head())
Explanation: The @st.cache_data decorator caches the load_data function's output, improving performance on subsequent runs.
Customizing the App Layout
Enhance user experience by customizing your app's layout and appearance.
Setting Page Configuration
import streamlit as st st.set_page_config( page_title="Advanced Streamlit Features", page_icon="?", layout="wide", initial_sidebar_state="expanded", )
Explanation: st.set_page_config sets global configurations like the page title, icon, layout, and sidebar state.
Using Columns and Containers
import streamlit as st col1, col2 = st.columns(2) with col1: st.header("Column 1") st.write("Content for the first column") with col2: st.header("Column 2") st.write("Content for the second column")
Explanation: Columns help organize content side by side.
Theming and Styling
Apply custom themes to match your app's branding or preferred aesthetics.
Applying a Custom Theme
Create a .streamlit/config.toml file in your app directory with the following content:
[theme] primaryColor="#d33682" backgroundColor="#002b36" secondaryBackgroundColor="#586e75" textColor="#ffffff" font="sans serif"
Explanation: The theme settings adjust the app's color scheme and font.
Interactive Widgets for Advanced User Input
Streamlit offers a variety of widgets for complex user interactions.
Date Input and Time Input
import streamlit as st date = st.date_input("Select a date") time = st.time_input("Select a time") st.write(f"You selected {date} at {time}")
Explanation: Allows users to input dates and times.
Color Picker
import streamlit as st color = st.color_picker('Pick A Color', '#00f900') st.write('The current color is', color)
Explanation: Users can select a color, which can be used in visualizations or styling.
Advanced Callbacks and Event Handling
Respond to user interactions with callbacks.
Using Button Callbacks
import streamlit as st def on_button_click(): st.write("Button was clicked!") st.button("Click Me", on_click=on_button_click)
Explanation: The on_click parameter specifies a function to execute when the button is clicked.
Integrating with External APIs
Fetch and display data from external sources.
Example: Fetching Data from an API
import streamlit as st import requests st.write("Fetch data from an API") response = requests.get('https://api.example.com/data') if response.status_code == 200: data = response.json() st.write(data) else: st.error("Failed to fetch data")
Explanation: Uses the requests library to fetch data from an API and display it.
Real-Time Data Updates with WebSockets
Streamlit supports bi-directional communication for real-time updates.
Using st.experimental_get_query_params
import streamlit as st params = st.experimental_get_query_params() st.write("Query parameters:", params)
Explanation: Access query parameters from the URL to control app behavior dynamically.
Modularizing Code with Components
Break down your app into reusable components.
Creating a Custom Component
# components.py import streamlit as st def display_header(): st.title("Advanced Streamlit Features") st.write("This is a custom component") # main app import streamlit as st from components import display_header display_header() st.write("Main app content")
Explanation: Organize code by splitting it into modules for better maintainability.
Localization and Internationalization
Make your app accessible to a global audience.
Setting the Language
import streamlit as st st.write("Hello, World!") # Use gettext or other localization libraries for translations
Explanation: While Streamlit doesn't provide built-in localization, you can use Python's localization libraries.
Accessibility Features
Ensure your app is usable by people with disabilities.
Use Semantic HTML: Streamlit automatically generates accessible HTML elements.
Provide Alt Text: When displaying images, use the caption parameter.
st.image('image.png', caption='Descriptive text')
Summary
In this section, we've explored several advanced features of Streamlit that empower you to build more interactive and efficient applications:
- State Management: Use st.session_state to preserve data across user interactions.
- Dynamic Layouts: Organize content with expanders, tabs, columns, and containers.
- File Handling: Allow users to upload and interact with files directly in the app.
- Performance Optimization: Improve app speed with caching decorators like @st.cache_data.
- Customization: Enhance the look and feel with custom themes and page configurations.
- Advanced Widgets: Utilize a variety of input widgets for richer user interactions.
- External Integrations: Connect your app to external APIs and services.
- Code Organization: Modularize your code for better readability and maintenance.
- Global Reach: Consider localization and accessibility to reach a wider audience.
By mastering these advanced features, you can create sophisticated Streamlit applications that provide a seamless and engaging user experience.
Integrating Machine Learning Models
Streamlit excels at making machine learning models accessible through interactive web applications. In this section, we'll explore how to integrate machine learning models into your Streamlit apps using the pre-installed libraries in the Python Data Science Notebook Docker Image, such as TensorFlow, PyTorch, and scikit-learn.
Loading Pre-trained Models with TensorFlow and PyTorch
The Docker image comes with TensorFlow and PyTorch installed, allowing you to work with complex neural network models.
Using TensorFlow
Loading a Pre-trained Model
import streamlit as st import tensorflow as tf # Load a pre-trained model, e.g., MobileNetV2 model = tf.keras.applications.MobileNetV2(weights='imagenet') st.write("Model loaded successfully.")
Making Predictions
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions from PIL import Image import numpy as np uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Load and preprocess the image image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image', use_column_width=True) img = image.resize((224, 224)) img_array = np.array(img) img_array = preprocess_input(img_array) img_array = np.expand_dims(img_array, axis=0) # Make prediction predictions = model.predict(img_array) results = decode_predictions(predictions, top=3)[0] # Display predictions st.write("Top Predictions:") for i, res in enumerate(results): st.write(f"{i+1}. {res[1]}: {round(res[2]*100, 2)}%")
Explanation: Users can upload an image, and the app displays the top predictions from the pre-trained MobileNetV2 model.
Using PyTorch
Loading a Pre-trained Model
import streamlit as st import torch from torchvision import models, transforms # Load a pre-trained ResNet model model = models.resnet18(pretrained=True) model.eval() st.write("PyTorch model loaded successfully.")
Making Predictions
from PIL import Image import torchvision.transforms as T uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Load and preprocess the image image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image', use_column_width=True) preprocess = T.Compose([ T.Resize(256), T.CenterCrop(224), T.ToTensor(), T.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ]) img_t = preprocess(image) batch_t = torch.unsqueeze(img_t, 0) # Make prediction with torch.no_grad(): out = model(batch_t) probabilities = torch.nn.functional.softmax(out[0], dim=0) # Load labels with open("imagenet_classes.txt") as f: labels = [line.strip() for line in f.readlines()] # Show top 3 predictions top3_prob, top3_catid = torch.topk(probabilities, 3) st.write("Top Predictions:") for i in range(top3_prob.size(0)): st.write(f"{i+1}. {labels[top3_catid[i]]}: {round(top3_prob[i].item()*100, 2)}%")
Note: Ensure that the imagenet_classes.txt file is available in your working directory.
Building a Simple Prediction App with scikit-learn
Let's build a simple regression app using scikit-learn.
Training a Model
import streamlit as st from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split # Load dataset data = load_boston() X = data.data y = data.target # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Train model model = RandomForestRegressor() model.fit(X_train, y_train) st.write("Model trained successfully.")
Making Predictions with User Input
import numpy as np st.header("Boston Housing Price Prediction") # Feature input sliders CRIM = st.number_input('Per capita crime rate by town', min_value=0.0, value=0.1) ZN = st.number_input('Proportion of residential land zoned for lots over 25,000 sq.ft.', min_value=0.0, value=0.0) # ... add inputs for other features # For brevity, we'll use default values for the rest of the features input_features = np.array([[CRIM, ZN] + [0]*(X.shape[1]-2)]) # Predict prediction = model.predict(input_features) st.write(f"Predicted median value of owner-occupied homes: ${prediction[0]*1000:.2f}")
Explanation: Users can input values for features, and the app predicts housing prices.
Visualizing Model Outputs and Performance Metrics
Visualizations help in understanding model performance.
Displaying Metrics
from sklearn.metrics import mean_squared_error, r2_score # Predict on test set y_pred = model.predict(X_test) # Calculate metrics mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) # Display metrics st.write("Model Performance on Test Set:") st.write(f"Mean Squared Error: {mse:.2f}") st.write(f"R² Score: {r2:.2f}")
Plotting Actual vs. Predicted Values
import pandas as pd df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}) st.write("Actual vs. Predicted Values") st.line_chart(df)
Explanation: The line chart shows how closely the model's predictions match the actual values.
Tips for Integrating Machine Learning Models in Streamlit
Model Serialization: For complex models, consider saving and loading models using joblib or pickle to avoid retraining every time.
import joblib # Save model joblib.dump(model, 'model.joblib') # Load model model = joblib.load('model.joblib') Use Caching for Models: Cache the model loading or training functions to improve performance. python Copy code @st.cache_resource def load_model(): # Load or train model return model
Handle Large Models: Be mindful of resource limitations. Use efficient data structures and consider offloading heavy computations.
Provide Clear Instructions: Guide users on how to interact with the app, especially when expecting specific input formats.
Summary
In this section, you've learned how to:
- Load and use pre-trained models with TensorFlow and PyTorch in your Streamlit apps.
- Build a simple prediction app using scikit-learn.
- Collect user input to make predictions and display results.
- Visualize model outputs and performance metrics to evaluate model effectiveness.
By integrating machine learning models into your Streamlit applications, you can create powerful tools that make complex models accessible to end-users in an interactive and user-friendly manner.
Database Connectivity
In many data science projects, interacting with databases is essential for retrieving, processing, and storing data. Streamlit, combined with the powerful libraries included in the Python Data Science Notebook Docker Image, makes it straightforward to connect to various databases and integrate them into your applications. In this section, we'll explore how to connect to databases using sqlalchemy, psycopg2, and specifically how to interact with Dremio using the dremio-simple-query library.
Connecting to Dremio Using dremio-simple-query
Dremio is a data lakehouse platform that enables you to govern, join, and accelerate queries across various data sources such as Iceberg, Delta Lake, S3, JSON, CSV, RDBMS, and more. The dremio-simple-query library simplifies querying a Dremio source using Apache Arrow Flight, providing performant data retrieval for analytics.
Installing the dremio-simple-query Library
First, ensure that the dremio-simple-query library is installed in your environment:
pip install dremio-simple-query
Setting Up the Connection to Dremio
To connect to Dremio, you'll need to obtain your Dremio Arrow Flight endpoint and an authentication token.
Obtaining the Arrow Flight Endpoint
- Dremio Cloud (NA): grpc+tls://data.dremio.cloud:443
- Dremio Cloud (EU): grpc+tls://data.eu.dremio.cloud:443
-
Dremio Software (SSL): grpc+tls://
:32010 -
Dremio Software (No SSL): grpc://
:32010
Getting Your Authentication Token
- Dremio Cloud: Obtain the token from the Dremio interface or via the REST API.
- Dremio Software: Obtain the token using the REST API.
You can use the get_token function from the dremio-simple-query library to retrieve the token programmatically.
Connecting to Dremio
import streamlit as st from dremio_simple_query.connect import get_token, DremioConnection from os import getenv from dotenv import load_dotenv # Load environment variables from a .env file (optional) load_dotenv() # Retrieve Dremio credentials and endpoints username = st.secrets["dremio_username"] password = st.secrets["dremio_password"] arrow_endpoint = st.secrets["dremio_arrow_endpoint"] # e.g., "grpc+tls://data.dremio.cloud:443" login_endpoint = st.secrets["dremio_login_endpoint"] # e.g., "https://your-dremio-server:9047/apiv2/login" # Get authentication token payload = { "userName": username, "password": password } token = get_token(uri=login_endpoint, payload=payload) # Establish connection to Dremio dremio = DremioConnection(token, arrow_endpoint) # Test the connection try: st.success("Successfully connected to Dremio.") except Exception as e: st.error(f"Failed to connect to Dremio: {e}")
Note: Ensure that you securely manage your credentials using Streamlit's secrets management or environment variables.
Querying Data from Dremio
You can now query data from Dremio and retrieve it in various formats.
Retrieving Data as an Arrow Table
# Query data and get a FlightStreamReader object stream = dremio.toArrow("SELECT * FROM your_space.your_table LIMIT 100") # Convert the stream to an Arrow Table arrow_table = stream.read_all() # Optionally, display the data in Streamlit df = arrow_table.to_pandas() st.write("Data from Dremio:") st.dataframe(df)
Retrieving Data as a Pandas DataFrame
# Directly get a Pandas DataFrame df = dremio.toPandas("SELECT * FROM your_space.your_table LIMIT 100") st.write("Data from Dremio:") st.dataframe(df)
Retrieving Data as a Polars DataFrame
# Get a Polars DataFrame df_polars = dremio.toPolars("SELECT * FROM your_space.your_table LIMIT 100") st.write("Data from Dremio (Polars DataFrame):") st.write(df_polars)
Querying with DuckDB
You can leverage DuckDB for in-memory analytics on the data retrieved from Dremio.
Using the DuckDB Relation API
# Retrieve data as a DuckDB relation duck_rel = dremio.toDuckDB("SELECT * FROM your_space.your_table LIMIT 100") # Perform queries on the DuckDB relation result = duck_rel.filter("column_name > 50").df() # Display the result st.write("Filtered Data using DuckDB:") st.dataframe(result)
Querying Arrow Objects with DuckDB
Alternatively, you can query Arrow Tables using DuckDB:
import duckdb # Get data from Dremio as an Arrow Table stream = dremio.toArrow("SELECT * FROM your_space.your_table LIMIT 100") arrow_table = stream.read_all() # Create a DuckDB connection con = duckdb.connect() # Register the Arrow Table with DuckDB con.register("dremio_table", arrow_table) # Perform SQL queries using DuckDB query = "SELECT * FROM dremio_table WHERE column_name > 50" result = con.execute(query).fetch_df() # Display the result st.write("Filtered Data using DuckDB on Arrow Table:") st.dataframe(result)
Best Practices for Using Dremio with Streamlit
- Secure Credentials: Always handle your Dremio credentials securely. Use Streamlit's secrets management or environment variables to avoid hardcoding sensitive information.
- Efficient Data Retrieval: Optimize your SQL queries to retrieve only the necessary data. Use LIMIT clauses and filters to reduce data transfer and improve performance.
- Error Handling: Implement try-except blocks to manage exceptions and provide informative error messages to users.
- Environment Configuration: Ensure that your arrow_endpoint and login_endpoint are correctly configured based on your Dremio deployment (Cloud or Software, with or without SSL).
Connecting to Databases Using sqlalchemy and psycopg2
In addition to Dremio, you might need to connect to other databases like PostgreSQL or MySQL. The Docker image comes with sqlalchemy, psycopg2-binary, and other database drivers pre-installed.
Setting Up a Connection to a PostgreSQL Database
from sqlalchemy import create_engine import pandas as pd # Database connection parameters DB_USER = st.secrets["db_user"] DB_PASSWORD = st.secrets["db_password"] DB_HOST = st.secrets["db_host"] DB_PORT = st.secrets["db_port"] DB_NAME = st.secrets["db_name"] # Create a database engine engine = create_engine(f'postgresql+psycopg2://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}') # Test the connection try: with engine.connect() as connection: st.success("Successfully connected to the PostgreSQL database.") except Exception as e: st.error(f"Failed to connect to the database: {e}")
Querying Data from the Database
# Sample query query = "SELECT * FROM your_table LIMIT 10" # Execute the query and load data into a DataFrame df = pd.read_sql(query, engine) # Display the data st.write("Data from PostgreSQL:") st.dataframe(df)
Handling Large Datasets with Dask
When dealing with large datasets, performance can become an issue. Dask is a parallel computing library that integrates with Pandas to handle larger-than-memory datasets efficiently.
Using Dask to Query Large Tables
Copy code import dask.dataframe as dd # Read data from SQL using Dask df = dd.read_sql_table( table='large_table', uri=f'postgresql+psycopg2://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}', index_col='id' ) # Perform computations with Dask DataFrame filtered_df = df[df['value'] > 100] # Compute the result and convert to Pandas DataFrame result = filtered_df.compute() # Display the result st.write("Filtered Data:") st.dataframe(result)
Best Practices for Database Connectivity
- Secure Credentials: Use Streamlit's secrets management or environment variables to store sensitive information.
- Parameterized Queries: Always use parameterized queries to prevent SQL injection.
- Connection Management: Use context managers (with statements) to ensure connections are properly closed.
- Error Handling: Implement try-except blocks to handle exceptions and provide user-friendly error messages.
- Limit Data Fetching: When displaying data in the app, limit the number of rows fetched to prevent performance issues.
Summary
In this section, you've learned how to:
- Connect to Dremio using the dremio-simple-query library and retrieve data efficiently using Apache Arrow Flight.
- Query data from Dremio and convert it into various formats such as Arrow Tables, Pandas DataFrames, Polars DataFrames, and DuckDB relations.
- Utilize DuckDB for in-memory analytics on data retrieved from Dremio.
- Connect to other databases like PostgreSQL using sqlalchemy and psycopg2.
- Handle large datasets efficiently using Dask. Implement best practices for secure and efficient database connectivity.
By integrating Dremio and other data systems into your Streamlit applications, you can create powerful data-driven apps that interact with live data sources, enabling real-time analysis and insights.
Deploying Streamlit Apps
With your Streamlit app developed and tested within the Docker environment, the next step is to deploy it so that others can access and use it. Deploying Streamlit apps can be done in several ways, including running the app locally, containerizing it with Docker, and deploying it to cloud platforms like Streamlit Community Cloud, Heroku, AWS, or other hosting services.
In this section, we'll explore how to:
- Run your Streamlit app outside of Jupyter Notebook
- Containerize your Streamlit app with Docker
- Deploy your app to cloud platforms
Running Streamlit Apps Outside of Jupyter Notebook
While developing within Jupyter Notebook is convenient, deploying your app typically involves running it as a standalone script.
Steps to Run the App Locally
- Ensure Streamlit is Installed
If you followed the previous sections, Streamlit should already be installed in your Docker container. If not, install it using:
pip install streamlit
Exit the Jupyter Notebook Environment
Stop the Jupyter Notebook server if it's still running.
Navigate to Your App Directory
Open a terminal and navigate to the directory containing your app.py file:
cd /home/pydata/work
Run the Streamlit App
Execute the following command:
streamlit run app.py
This command starts the Streamlit server and serves your app at http://localhost:8501 by default.
Access the App in Your Browser
Open your web browser and navigate to http://localhost:8501 to interact with your app.
Containerizing Your Streamlit App with Docker
Containerizing your app ensures consistency across different environments and simplifies deployment.
Creating a Dockerfile for Your Streamlit App
Create a Dockerfile
In your app directory, create a file named Dockerfile with the following content:
# Use the official Python image as base FROM python:3.9-slim # Set the working directory WORKDIR /app # Copy the requirements file COPY requirements.txt . # Install dependencies RUN pip install --no-cache-dir -r requirements.txt # Copy the rest of the application code COPY . . # Expose the port Streamlit uses EXPOSE 8501 # Run the Streamlit app CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
Create a requirements.txt File
List all your Python dependencies in a file named requirements.txt:
streamlit pandas numpy # Add any other dependencies your app requires
Build the Docker Image
In your terminal, run:
docker build -t my-streamlit-app .
This builds the Docker image and tags it as my-streamlit-app.
Run the Docker Container
docker run -p 8501:8501 my-streamlit-app
Maps port 8501 in the container to port 8501 on your host machine.
Access the App
Open your web browser and navigate to http://localhost:8501.
Pushing the Docker Image to a Registry (Optional)
If you plan to deploy your app using Docker images, you may need to push it to a Docker registry like Docker Hub or a private registry.
# Tag the image for Docker Hub docker tag my-streamlit-app your-dockerhub-username/my-streamlit-app # Log in to Docker Hub docker login # Push the image docker push your-dockerhub-username/my-streamlit-app
Deploying to Cloud Platforms
There are several cloud platforms that support deploying Streamlit apps. Below, we'll cover deploying to Streamlit Community Cloud, Heroku, and AWS Elastic Beanstalk.
Deploying to Streamlit Community Cloud
Streamlit offers a free hosting service for public GitHub repositories.
Push Your App to GitHub
Ensure your app code is in a GitHub repository.
Sign Up for Streamlit Community Cloud
Go to streamlit.io/cloud and sign up using your GitHub account.
Deploy Your App
Click on "New app".
Select your GitHub repository and branch.
Specify the location of your app.py file.
Click "Deploy".
Access Your App
Once deployed, you'll receive a URL where your app is hosted.
Deploying to Heroku
Heroku is a cloud platform that supports deploying applications using Docker.
Create a Procfile
In your app directory, create a file named Procfile with the following content:
web: streamlit run app.py --server.port=$PORT --server.address=0.0.0.0
Create a requirements.txt File
Ensure you have a requirements.txt file listing your dependencies.
Initialize a Git Repository
If you haven't already:
git init git add . git commit -m "Initial commit"
Create a Heroku App
Install the Heroku CLI and log in:
heroku login
Create a new app:
heroku create your-app-name
Deploy Your App
Push your code to Heroku:
git push heroku master
Scale the Web Process
heroku ps:scale web=1
Access Your App
heroku open
Deploying to AWS Elastic Beanstalk
AWS Elastic Beanstalk supports deploying applications in Docker containers.
Install the AWS Elastic Beanstalk CLI
Follow the official AWS documentation to install the EB CLI.
Initialize Elastic Beanstalk
eb init -p docker my-streamlit-app
Create an Environment
eb create my-streamlit-env
Deploy Your App
eb deploy
Access Your App
eb open
Deploying with Other Services
You can deploy your Streamlit app using other platforms like:
- Google Cloud Run: For serverless container deployments.
- Azure App Service: For deploying web apps on Azure.
- Kubernetes: For scalable and managed deployments.
- Docker Compose: For multi-container applications.
Example: Deploying to Google Cloud Run
Build and Push the Docker Image to Google Container Registry
# Build the Docker image docker build -t gcr.io/your-project-id/my-streamlit-app . # Push the image docker push gcr.io/your-project-id/my-streamlit-app
Deploy to Cloud Run
gcloud run deploy my-streamlit-app \ --image gcr.io/your-project-id/my-streamlit-app \ --platform managed \ --region us-central1 \ --allow-unauthenticated
Best Practices for Deployment
- Environment Variables: Use environment variables to manage secrets and configuration settings.
- Logging: Implement logging to monitor your app's performance and errors.
- Security: Ensure your app is secure by handling user input appropriately and securing API keys.
- Scalability: Choose deployment options that allow your app to scale with user demand.
- Continuous Integration/Continuous Deployment (CI/CD): Set up CI/CD pipelines to automate the deployment process.
Managing Secrets and Configuration
Use environment variables to store sensitive information:
import os API_KEY = os.getenv("API_KEY")
Set the environment variable in your deployment platform's settings or configuration.
Implementing Logging
Use Python's built-in logging library:
import logging logging.basicConfig(level=logging.INFO) logging.info("This is an info message")
Handling User Input Securely
Validate and sanitize all user inputs to prevent security vulnerabilities like injection attacks.
Summary
In this section, you've learned how to:
- Run your Streamlit app outside of the development environment
- Containerize your app using Docker for consistent deployments
- Deploy your app to cloud platforms like Streamlit Community Cloud, Heroku, and AWS Elastic Beanstalk
- Apply best practices for deploying and maintaining your Streamlit applications
By deploying your Streamlit app, you make it accessible to a wider audience, allowing others to benefit from your interactive data applications.
Best Practices and Tips
Developing Streamlit applications involves not just coding but also adhering to best practices that ensure your app is efficient, maintainable, and user-friendly. In this section, we'll cover some essential tips and best practices to help you optimize your Streamlit apps.
Organizing Your Streamlit Codebase
A well-organized codebase enhances readability and maintainability, especially as your application grows in complexity.
Use Modular Code Structure
- Separate Concerns: Break down your code into modules or scripts based on functionality, such as data loading, preprocessing, visualization, and utility functions.
- Create a components Module: Encapsulate reusable UI components in a separate module to avoid code duplication.
# components.py import streamlit as st def sidebar_filters(): st.sidebar.header("Filters") # Add filter widgets
# main app.py import streamlit as st from components import sidebar_filters sidebar_filters() # Rest of your app code
Follow Naming Conventions
- Consistent Naming: Use meaningful variable and function names that follow Python's naming conventions.
- Folder Structure: Organize files into folders such as data, models, utils, and pages if using Streamlit's multipage apps.
Use Virtual Environments
- Environment Isolation: Use virtual environments (e.g., venv, conda, or pipenv) to manage dependencies and avoid conflicts. Version Control
Git: Use Git for version control to track changes and collaborate with others.
.gitignore: Include a .gitignore file to exclude unnecessary files from your repository.
__pycache__/ .DS_Store venv/ .env
Enhancing User Experience with Custom Themes and Layouts
A polished UI enhances the user experience and makes your app more engaging.
Custom Themes
Streamlit Themes: Customize the appearance of your app using Streamlit's theming options.
Modify config.toml: Create a .streamlit/config.toml file to define your theme settings.
Copy code [theme] primaryColor="#6eb52f" backgroundColor="#f0f0f5" secondaryBackgroundColor="#e0e0ef" textColor="#262730" font="sans serif"
Responsive Layouts
Use Columns and Containers: Organize content using st.columns(), st.container(), and st.expander() for a clean layout.
col1, col2 = st.columns(2) with col1: st.header("Section 1") # Content for section 1 with col2: st.header("Section 2") # Content for section 2
Interactive Elements
Feedback: Use st.progress(), st.spinner(), and st.toast() to provide feedback during long computations.
with st.spinner('Loading data...'): df = load_data() st.success('Data loaded successfully!')
Tooltips and Help Text: Add tooltips or help text to widgets to guide users.
st.text_input("Username", help="Enter your user ID assigned by the administrator")
Accessibility
Alt Text for Images: Use the caption parameter in st.image() to provide descriptions.
st.image('chart.png', caption='Sales over time')
Keyboard Navigation: Ensure that all interactive elements can be navigated using the keyboard.
Debugging Common Issues in Streamlit Apps
Being able to identify and fix issues quickly is crucial for smooth app development.
Common Issues and Solutions
App Crashes or Freezes
- Infinite Loops: Ensure that your code doesn't have infinite loops that can block the app. Large Data Loading: Use caching with @st.cache_data to prevent reloading data on every interaction.
Slow Performance
- Heavy Computations: Optimize code by using efficient algorithms or leveraging libraries like NumPy and Pandas.
- Caching: Use @st.cache_data and @st.cache_resource to cache expensive operations. Widget State Not Preserved
- Session State: Use st.session_state to maintain state across interactions.
if 'counter' not in st.session_state: st.session_state.counter = 0 increment = st.button('Increment') if increment: st.session_state.counter += 1 st.write(f"Counter: {st.session_state.counter}")
Errors When Deploying
Dependency Mismatches: Ensure that all dependencies are listed in requirements.txt and versions are compatible.
Environment Variables: Check that all required environment variables are set in the deployment environment.
Streamlit Version Issues
API Changes: If you encounter deprecated functions, update your code to match the latest Streamlit API.
Version Pinning: Specify the Streamlit version in your requirements.txt to maintain consistency.
streamlit==1.25.0
Logging and Error Tracking
Use Logging
import logging logging.basicConfig(level=logging.INFO) logging.info("This is an info message")
Display Errors
Use st.error() to display error messages to the user.
try: result = perform_calculation() st.write(result) except Exception as e: st.error(f"An error occurred: {e}")
Testing
Unit Tests: Write unit tests for your functions using unittest or pytest.
Test Scripts: Create test scripts to simulate user interactions and verify app behavior.
Performance Optimization
Optimizing your app's performance ensures a better user experience.
Efficient Data Handling
Lazy Loading: Load data only when necessary, perhaps in response to user input.
Data Sampling: For large datasets, consider using a sample for initial display and provide options to load more data.
Use of Caching
Cache Data Loading
@st.cache_data def load_data(): # Load data from source return data
Cache Computations
@st.cache_data def compute_expensive_operation(params): # Perform computation return result
Optimize Resource Usage
Avoid Redundant Computations: Structure code to prevent unnecessary re-execution of functions.
Clear Session State When Needed: Manage st.session_state to free up memory if variables are no longer needed.
Security Considerations
Ensure your app is secure, especially when handling sensitive data.
Input Validation: Always validate and sanitize user inputs.
Secrets Management: Use Streamlit's secrets management to handle API keys and passwords.
import os API_KEY = st.secrets["api_key"]
HTTPS: Deploy your app using HTTPS to encrypt data in transit.
Documentation and User Guides
Provide documentation to help users understand and navigate your app.
Inline Documentation: Use st.markdown() or st.write() to include instructions and explanations within the app.
User Manuals: Provide a downloadable or linked user guide for complex applications.
Tooltips: Utilize the help parameter in widgets to give users quick hints.
Keep Up with Streamlit Updates
Streamlit is actively developed, and staying updated can help you leverage new features.
Changelog: Regularly check the Streamlit changelog for updates.
Community Forums: Participate in the Streamlit community forums to learn from others and share your experiences.
Update Dependencies: Periodically update your dependencies to benefit from performance improvements and security patches.
Summary
By following these best practices and tips, you can:
- Enhance the maintainability and readability of your code.
- Create a more engaging and user-friendly app interface.
- Quickly identify and resolve issues during development.
- Optimize your app's performance for a better user experience.
- Ensure the security and integrity of your application and data.
Implementing these strategies will help you develop professional, robust, and efficient Streamlit applications that meet the needs of your users and stakeholders.
Conclusion
In this comprehensive guide, we've embarked on a journey to master Streamlit using the Python Data Science Notebook Docker Image. Throughout the chapters, we've explored how to set up a robust environment, harness the power of Streamlit for building interactive data applications, and leverage advanced features to enhance functionality and user experience.
Zusammenfassung der wichtigsten Erkenntnisse
- Umgebungseinrichtung: Einrichtung einer konsistenten und portablen Entwicklungsumgebung mit Docker, um sicherzustellen, dass alle erforderlichen Bibliotheken und Tools sofort verfügbar sind.
- Erste Schritte mit Streamlit: Wir haben unsere erste Streamlit-App erstellt und dabei die Grundstruktur und Kernkomponenten verstanden, aus denen eine Streamlit-Anwendung besteht.
- Interaktive Datenvisualisierungen: Nutzung integrierter Streamlit-Funktionen und integrierter Bibliotheken wie Altair und Plotly, um dynamische und interaktive Visualisierungen zu erstellen.
- Erweiterte Funktionen: Genutzte Statusverwaltung mit st.session_state, dynamische Inhaltserstellung mit Layoutelementen und Leistungsoptimierung durch Caching-Mechanismen.
- Integration von Modellen für maschinelles Lernen: Mit TensorFlow, PyTorch und scikit-learn werden Modelle für maschinelles Lernen geladen und mit ihnen interagiert, um Vorhersagen zu treffen und Ergebnisse in Streamlit-Apps zu visualisieren.
- Datenbankkonnektivität: Verbunden mit verschiedenen Datenbanken, einschließlich Dremio, PostgreSQL und MySQL, unter Verwendung leistungsstarker Bibliotheken zur effizienten Abfrage und Bearbeitung von Daten.
- Bereitstellung von Streamlit-Apps: Erkundete verschiedene Bereitstellungsstrategien, von der lokalen Ausführung von Apps über die Containerisierung mit Docker bis hin zur Bereitstellung auf Cloud-Plattformen wie Streamlit Community Cloud, Heroku und AWS.
- Best Practices und Tipps: Betont die Bedeutung der Codeorganisation, Verbesserungen der Benutzererfahrung, Debugging-Techniken, Leistungsoptimierung und Sicherheitsüberlegungen für die Erstellung professioneller und robuster Anwendungen.
Nächste Schritte zur weiteren Erkundung von Streamlit
Obwohl wir schon viel abgedeckt haben, gibt es immer noch mehr zu lernen und zu entdecken:
- Tauchen Sie tiefer in Streamlit-Komponenten ein: Experimentieren Sie mit benutzerdefinierten Komponenten und der Streamlit-Komponenten-API, um die Funktionalität Ihrer Apps zu erweitern.
- Entdecken Sie die mehrseitigen Apps von Streamlit: Organisieren Sie komplexe Anwendungen auf mehreren Seiten für eine bessere Benutzernavigation und -struktur.
- Zusätzliche Bibliotheken integrieren: Integrieren Sie andere Bibliotheken für Datenwissenschaft und maschinelles Lernen, um die Funktionen Ihrer Anwendungen zu erweitern.
- Tragen Sie zur Community bei: Teilen Sie Ihre Apps und Komponenten mit der Streamlit-Community, tragen Sie zu Open-Source-Projekten bei und beteiligen Sie sich an Diskussionen, um von anderen zu lernen.
Zusätzliche Ressourcen und Communities
- Offizielle Streamlit-Dokumentation: docs.streamlit.io
- Streamlit-Foren: Treten Sie mit der Community auf der Streamlit Discourse-Plattform in Kontakt.
- Streamlit auf GitHub: Entdecken Sie den Quellcode und leisten Sie einen Beitrag unter github.com/streamlit/streamlit.
- Tutorials und Kurse: Suchen Sie nach Online-Tutorials, Kursen und Webinaren, die fortgeschrittene Themen und reale Anwendungsfälle abdecken.
- Blogs und Artikel: Verfolgen Sie Blogs und Artikel von Data-Science-Experten, die Erkenntnisse und Best Practices austauschen.
Letzte Gedanken
Streamlit hat die Art und Weise, wie wir Datenanwendungen erstellen und teilen, revolutioniert und es Datenwissenschaftlern und Entwicklern ermöglicht, ganz einfach interaktive Webanwendungen zu erstellen. Durch die Kombination von Streamlit mit dem Python Data Science Notebook Docker Image haben wir einen leistungsstarken Workflow etabliert, der die Umgebungseinrichtung vereinfacht und die Anwendungsentwicklung beschleunigt.
Denken Sie bei Ihrer weiteren Reise daran, dass der Schlüssel zur Meisterschaft in konsequenter Übung und Erkundung liegt. Zögern Sie nicht, mit neuen Ideen zu experimentieren, Feedback einzuholen und Ihre Anwendungen zu überarbeiten. Die Welt der Datenwissenschaft entwickelt sich ständig weiter und Tools wie Streamlit sind führend, wenn es darum geht, Daten für alle zugänglicher und ansprechender zu machen.
以上是使用 Streamlit 深入研究數據應用程式的詳細內容。更多資訊請關注PHP中文網其他相關文章!

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。1)在金融中,使用内存映射文件和NumPy库可显著提升数据处理速度。2)科研领域,HDF5文件优化数据存储和检索。3)医疗中,数据库优化技术如索引和分区提高数据查询性能。4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显著提升系统性能和可扩展性。

pythonarraysarecreatedusiseThearrayModule,notbuilt-Inlikelists.1)importThearrayModule.2)指定tefifythetypecode,例如,'i'forineizewithvalues.arreaysofferbettermemoremorefferbettermemoryfforhomogeNogeNogeNogeNogeNogeNogeNATATABUTESFELLESSFRESSIFERSTEMIFICETISTHANANLISTS。

除了shebang線,還有多種方法可以指定Python解釋器:1.直接使用命令行中的python命令;2.使用批處理文件或shell腳本;3.使用構建工具如Make或CMake;4.使用任務運行器如Invoke。每個方法都有其優缺點,選擇適合項目需求的方法很重要。

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

記事本++7.3.1
好用且免費的程式碼編輯器