搜尋
首頁後端開發Python教學探索 Flask 中的模型關係

Exploring Model Relationships in Flask

編碼類別之間的關係一開始可能會很困難!聽起來就像一堆單字拼湊在一起——這個東西透過那個東西知道這個東西,但不知道另一個東西。使用現實生活中的例子有助於形象化這些關係。

例如,假設您有一些太空人。多年來,這些太空人將參觀許多植物;每個任務一顆行星。因此,每個任務都有一名宇航員一顆行星,並且許多行星許多宇航員訪問。

在 Flask 中,Astronaut 和 Planet 之間是多對多的關係,而 Astronaut 和 Mission 以及 Planet 和 Mission 之間都是一對多的關係。我們有三個模型:任務模型作為太空人模型和行星模型之間的連接表運行。這些類別稱為模型,因為它們定義(或建模)資料之間的關係。

那麼,我們要如何編碼這些關係呢?

我發現從連接表開始最簡單,因為我正在從那裡建立兩種關係。

class Mission(db.Model):
    __tablename__ = 'missions'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String)

這就是我們使命課程的開始。

我們知道每個任務都有一名太空人

astronaut = db.relationship 

db.relationship 定義兩個模型如何相互關聯。

讓我們將它連接到 Astronaut 類別....

astronaut = db.relationship('Astronaut')

現在讓我們加入兩個模型(太空人和任務)之間的雙向關係:

astronaut = db.relationship('Astronaut', back_populates="missions")

幹得好!由於 Mission 同時擁有太空人和行星關係,所以讓我們對行星做同樣的事情:

planet = db.relationship('Planet', back_populates="missions")

這是我們的任務類,其關係如下:

class Mission(db.Model):
    __tablename__ = 'missions'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String)

    astronaut = db.relationship('Astronaut', back_populates="missions")
    planet = db.relationship('Planet', back_populates="missions")

太棒了!讓我們回去看看我們的指令:任務模型作為太空人模型和行星之間的_join表運行模型. _
因此,我們需要將太空人與任務、行星與任務連結起來。讓我們從太空人開始:

missions = db.relationship('Mission', back_populates="astronauts")

任務在這裡是複數,因為太空人要執行一堆任務(希望如此!)。

然後是 Planet,它看起來應該類似:

missions = db.relationship('Mission', back_populates="planets")

太棒了!全部加在一起,看起來像:

class Planet(db.Model):
    __tablename__ = 'planets'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String)
    distance_from_earth = db.Column(db.Integer)
    nearest_star = db.Column(db.String)

    missions = db.relationship('Mission', back_populates="planet")


class Astronaut(db.Model):
    __tablename__ = 'astronauts'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String)
    field_of_study = db.Column(db.String)

    missions = db.relationship('Mission', back_populates="astronaut")


class Mission(db.Model):
    __tablename__ = 'missions'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String)

    astronaut = db.relationship('Astronaut', back_populates="astronauts")
    planet = db.relationship('Planet', back_populates="missions")

最後,讓我們將外鍵加入到我們的任務表中。外鍵是一個整數,它引用另一個資料庫中將兩者連結在一起的項目。例如,任務表中太空人 1 的外鍵為 1,因此每次我們在該列中看到數字 1 時,我們就知道它適用於該太空人!

Mission 是唯一需要外鍵的類,因為它負責所有關係。

class Mission(db.Model, SerializerMixin):
    __tablename__ = 'missions'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String)

    astronaut_id = db.Column(db.Integer, db.ForeignKey('astronauts.id'))
    planet_id = db.Column(db.Integer, db.ForeignKey('planets.id'))

    astronaut = db.relationship('Astronaut', back_populates="missions")
    planet = db.relationship('Planet', back_populates="missions")

    serialize_rules = ('-astronaut.missions', '-astronaut.planets')

幹得好!我們已經在模型之間建立了一些關係。感謝您編碼!

資料來源:感謝 Flatiron School 提供的這個實驗室!我將班級名稱“科學家”改為“宇航員”。

以上是探索 Flask 中的模型關係的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用