搜尋
首頁後端開發Python教學使用 Snowflake (SiS) 中的 Streamlit 為每個使用者進行個人化

介紹

2024 年 7 月底,Snowflake 中的 Streamlit 中提供了 Current_User 和行存取策略。

這個更新令人興奮的部分是,現在可以輕鬆、安全地識別連接到應用程式的 Snowflake 用戶並為每個用戶自訂處理。

無需設定自訂登入機製或使用者管理表,您可以透過以下方式為每個使用者個性化單一應用程式:

  • 更改每個使用者的應用程式顯示
  • 為每位使用者準備個人化分析儀表板
  • 使用行存取策略為每位使用者取得不同的查詢輸出結果(企業版以上版本)

在這篇文章中,我們將建立一個簡單的待辦事項清單來顯示個人使用者資訊。

註:本文僅代表個人觀點,不代表Snowflake。

功能概述

目標

  • 使用單一共用應用程式管理個人待辦事項清單
  • 使用行存取策略來阻止顯示其他人的待辦事項

完成的影像

Personalize for each user with Streamlit in Snowflake (SiS)
使用者TKANNO的螢幕

Personalize for each user with Streamlit in Snowflake (SiS)
使用者TARO的螢幕

先決條件

  • 雪花帳戶
    • 需要企業版帳戶才能使用行存取政策

筆記

  • Snowflake 中的 Streamlit 以擁有者權限運行,因此 Current_Role 將與 Snowflake 中的 Streamlit 應用程式角色相同。 (因此不能用於個人化)

程式

建立一個表格來儲存 ToDo 列表

從工作表執行以下指令:

-- Create ToDo list table
CREATE TABLE IF NOT EXISTS todo_list (
    id INT AUTOINCREMENT,
    task VARCHAR(255),
    status VARCHAR(20),
    due_date DATE,
    completed_date DATE,
    owner VARCHAR(50)
);

建立行存取策略

此策略傳回 todo_list 表中的擁有者與連接到 Snowflake 應用程式中的 Streamlit 的 current_user 相符的行。

從工作表執行以下指令:

-- Create row access policy
CREATE ROW ACCESS POLICY IF NOT EXISTS todo_row_access_policy
    AS (owner VARCHAR) RETURNS BOOLEAN ->
        owner = CURRENT_USER();

應用程式存取策略

從工作表執行以下指令:

-- Apply row access policy
ALTER TABLE todo_list ADD ROW ACCESS POLICY todo_row_access_policy ON (owner);

至此完成了工作表操作。

在 Snowflake 應用程式中運行 Streamlit

在 Snowflake 應用程式中建立一個新的 Streamlit,然後複製並貼上以下程式碼:

第 14 行是以字串形式檢索連接到應用程式的目前使用者的位置。

import streamlit as st
from snowflake.snowpark.context import get_active_session
import pandas as pd

# Layout settings
st.set_page_config(
    layout="wide"
)

# Get Snowflake session
session = get_active_session()

# Get current user
current_user = session.sql("SELECT CURRENT_USER()").collect()[0][0]

# Get ToDo list
def get_todo_list():
    return session.table("todo_list").to_pandas()

# Add or update task
def upsert_task(task_id, task, status, due_date, completed_date):
    due_date_sql = f"'{due_date}'" if due_date else "NULL"
    completed_date_sql = f"'{completed_date}'" if completed_date else "NULL"

    if task_id:
        session.sql(f"""
        UPDATE todo_list
        SET task = '{task}', status = '{status}', due_date = {due_date_sql}, completed_date = {completed_date_sql}
        WHERE id = {task_id}
        """).collect()
    else:
        session.sql(f"""
        INSERT INTO todo_list (task, status, owner, due_date, completed_date)
        VALUES ('{task}', '{status}', '{current_user}', {due_date_sql}, {completed_date_sql})
        """).collect()

# Delete task
def delete_task(task_id):
    session.sql(f"DELETE FROM todo_list WHERE id = {task_id}").collect()

# Main function
def main():
    st.title(f"{current_user}'s Personal Dashboard")

    # Task list
    st.subheader(f"{current_user}'s ToDo List")
    todo_df = get_todo_list()

    # Display header
    col1, col2, col3, col4, col5 = st.columns([3, 2, 2, 2, 2])
    col1.write("Task")
    col2.write("Status")
    col3.write("Due Date")
    col4.write("Completed Date")
    col5.write("Delete")

    # Display task list
    for _, row in todo_df.iterrows():
        col1, col2, col3, col4, col5 = st.columns([3, 2, 2, 2, 2])

        with col1:
            task = st.text_input("task", value=row['TASK'], key=f"task_{row['ID']}", label_visibility="collapsed")

        with col2:
            status = st.selectbox("status", ["Pending", "In Progress", "Completed"], index=["Pending", "In Progress", "Completed"].index(row['STATUS']), key=f"status_{row['ID']}", label_visibility="collapsed")

        with col3:
            due_date = st.date_input("due_date", value=pd.to_datetime(row['DUE_DATE']).date() if pd.notna(row['DUE_DATE']) else None, key=f"due_date_{row['ID']}", label_visibility="collapsed")

        with col4:
            completed_date = st.date_input("comp_date", value=pd.to_datetime(row['COMPLETED_DATE']).date() if pd.notna(row['COMPLETED_DATE']) else None, key=f"completed_date_{row['ID']}", label_visibility="collapsed")

        with col5:
            if st.button("Delete", key=f"delete_{row['ID']}"):
                delete_task(row['ID'])
                st.experimental_rerun()

        # Update database immediately if values change
        if task != row['TASK'] or status != row['STATUS'] or due_date != row['DUE_DATE'] or completed_date != row['COMPLETED_DATE']:
            upsert_task(row['ID'], task, status, due_date, completed_date)
            st.experimental_rerun()

    # Add new task
    st.subheader("Add New Task")
    new_task = st.text_input("New Task")
    new_status = st.selectbox("Status", ["Pending", "In Progress", "Completed"])
    new_due_date = st.date_input("Due Date")
    if st.button("Add"):
        upsert_task(None, new_task, new_status, new_due_date, None)
        st.success("New task added")
        st.experimental_rerun()

# Main process
if __name__ == "__main__":
    main()

結論

你覺得怎麼樣?透過結合 Current_User 和行存取策略,您可以透過簡單的步驟為每個使用者建立個人化的安全應用程式。這為根據您的想法創建更用戶友好的應用程式提供了可能性。

一些先進的想法包括在 Snowflake 中透過 Streamlit 寫入表時添加 Current_User 資訊作為簽名,或使用個人化資訊作為 Cortex LLM 的上下文來建立個人助理。

請嘗試用 Current_User 的有趣用途來挑戰自己!

公告

Snowflake 最新動態 X 更新

我正在分享 Snowflake 在 X 上的最新動態。如果您有興趣,請隨時關注!

英文版

雪花新鮮事機器人(英文版)
https://x.com/snow_new_en

日文版

雪花What's New Bot(日文版)
https://x.com/snow_new_jp

變更歷史記錄

(20240914) 初始貼文

日本原創文章

https://zenn.dev/tsubasa_tech/articles/a23029dfe97c46

以上是使用 Snowflake (SiS) 中的 Streamlit 為每個使用者進行個人化的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
學習Python:2小時的每日學習是否足夠?學習Python:2小時的每日學習是否足夠?Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Web開發的Python:關鍵應用程序Web開發的Python:關鍵應用程序Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

python在行動中:現實世界中的例子python在行動中:現實世界中的例子Apr 18, 2025 am 12:18 AM

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python的主要用途:綜合概述Python的主要用途:綜合概述Apr 18, 2025 am 12:18 AM

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的主要目的:靈活性和易用性Python的主要目的:靈活性和易用性Apr 17, 2025 am 12:14 AM

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python:多功能編程的力量Python:多功能編程的力量Apr 17, 2025 am 12:09 AM

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

每天2小時學習Python:實用指南每天2小時學習Python:實用指南Apr 17, 2025 am 12:05 AM

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前By尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器