搜尋
首頁後端開發Python教學Python 程式碼片段

Python Code Snippets

陣列

清單

# Creating a list
my_list = []
my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

# List of different data types
mixed_list = [1, "hello", 3.14, True]

# Accessing elements
print(my_list[0])  # Output: 1
print(my_list[-1]) # Output: 5

# Append to the end
my_list.append(6)

# Insert at a specific position
my_list.insert(2, 10)

# Find an element in an array
index=my_list.find(element)

# Remove by value
my_list.remove(10)

# Remove by index
removed_element = my_list.pop(2)

# Length of the list
print(len(my_list))

# Slicing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# sequence[start:stop:step]

print(my_list[1:4])  # Output: [1, 2, 3]
print(my_list[5:])  # Output: [5, 6, 7, 8, 9]
print(my_list[:5])  # Output: [0, 1, 2, 3, 4]
print(my_list[::2])  # Output: [0, 2, 4, 6, 8]
print(my_list[-4:])  # Output: [6, 7, 8, 9]
print(my_list[:-4])  # Output: [0, 1, 2, 3, 4, 5]
print(my_list[::-1])  # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
print(my_list[8:2:-2])  # Output: [8, 6, 4]
print(my_list[1:8:2])  # Output: [1, 3, 5, 7]
print(my_list[-2:-7:-1])  # Output: [8, 7, 6, 5, 4]

# Reversing a list
my_list.reverse()

# Sorting a list
my_list.sort()

排列組合

import itertools

# Example list
data = [1, 2, 3]

# Generating permutations of the entire list
perms = list(itertools.permutations(data))
print(perms)
# Output: [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

# Generating permutations of length 2
perms_length_2 = list(itertools.permutations(data, 2))
print(perms_length_2)
# Output: [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]

combinations(iterable, r) #order does not matter

手動產生排列
您也可以使用遞歸手動產生排列。這是一個簡單的實作:

def permute(arr):
    result = []

    # Base case: if the list is empty, return an empty list
    if len(arr) == 0:
        return [[]]

    # Recursive case
    for i in range(len(arr)):
        elem = arr[i]
        rest = arr[:i] + arr[i+1:]
        for p in permute(rest):
            result.append([elem] + p)

    return result

堆疊

(列表可以用作堆疊)

st=[]
st.append()
st.pop()
top_element = stack[-1]

尖端

1) 脫衣:
它用於從字串中刪除前導和尾隨空格(或其他指定字元)

#EX. (1,2) to 1,2
s.strip('()')

2)不要用普通字典

from collections import defaultdict
dictionary=defaultdict(int)

3) 重要檢查與轉換

s.isdigit()
s.isalpha()
s.isalnum()
s.islower()
s.isupper()
s.lower()
s.upper()

4) 重要

round(number, decimal_digits)
ord(each)-ord('a')+1 # value of an alphabet
#/ (Floating-Point Division)
#// (Floor Division)
maxim = float('-inf')
minim = float('inf')
unique_lengths.sort(reverse=True)
s.count('x')

list1 = [1, 2, 3]
iterable = [4, 5, 6]
list1.extend(iterable)

position.replace('(', '').replace(')', '')

expression = "2 + 3 * 4"
result = eval(expression)
print(result) 

#Determinant
import numpy as 
arr=[[1,2,3],[3,4,5],[5,6,7]]
print(np.linalg.det(np.array(arr)))

已排序

my_list = [3, 1, 4, 1, 5]
sorted_list = sorted(my_list)

my_tuple = (3, 1, 4, 1, 5)
sorted_list = sorted(my_tuple)

my_dict = {'apple': 3, 'banana': 1, 'cherry': 2}
sorted_keys = sorted(my_dict)

my_list = [3, 1, 4, 1, 5]
sorted_list = sorted(my_list, reverse=True)

列舉

my_list = ['a', 'b', 'c']
for index, value in enumerate(my_list):
    print(index, value)

透過物件引用傳遞

不可變類型(如整數、字串、元組):

def modify_immutable(x):
    x = 10  # Rebinding the local variable to a new object
    print("Inside function:", x)

a = 5
modify_immutable(a) #prints 10
print("Outside function:", a) #prints 5

可變類型(如列表、字典、集合):

def modify_mutable(lst):
    lst.append(4)  # Modifying the original list object
    print("Inside function:", lst)

my_list = [1, 2, 3]
modify_mutable(my_list) # [1,2,3]
print("Outside function:", my_list) # [1,2,3,4]

Numpy 數組(用於數值運算)

import numpy as np

# Creating a 1D array
arr_1d = np.array([1, 2, 3, 4, 5])

# Creating a 2D array
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])

# Creating an array filled with zeros
zeros = np.zeros((3, 4))

# Creating an array filled with ones
ones = np.ones((2, 3))

# Creating an array with a range of values
range_arr = np.arange(0, 10, 2)

# Creating an array with evenly spaced values
linspace_arr = np.linspace(0, 1, 5)

# Creating an identity matrix
identity_matrix = np.eye(3)

# Shape of the array
shape = arr_2d.shape  # Output: (2, 3)

# Size of the array (total number of elements)
size = arr_2d.size  # Output: 6

# Element-wise addition
arr_add = arr_1d + 5  # Output: array([6, 7, 8, 9, 10])

# Element-wise subtraction
arr_sub = arr_1d - 2  # Output: array([ -1, 0, 1, 2, 3])

# Element-wise multiplication
arr_mul = arr_1d * 2  # Output: array([ 2, 4, 6, 8, 10])

# Element-wise division
arr_div = arr_1d / 2  # Output: array([0.5, 1. , 1.5, 2. , 2.5])

# Sum
total_sum = np.sum(arr_2d)  # Output: 21

# Mean
mean_value = np.mean(arr_2d)  # Output: 3.5

# Standard deviation
std_dev = np.std(arr_2d)  # Output: 1.707825127659933

# Maximum and minimum
max_value = np.max(arr_2d)  # Output: 6
min_value = np.min(arr_2d)  # Output: 1

# Reshaping
reshaped_arr = arr_1d.reshape((5, 1))

# Flattening
flattened_arr = arr_2d.flatten()

# Transposing
transposed_arr = arr_2d.T

# Indexing
element = arr_2d[1, 2]  # Output: 6

# Slicing
subarray = arr_2d[0:2, 1:3]  # Output: array([[2, 3], [5, 6]])

阿斯型

它是 NumPy 中的一個函數,用於將 numpy 數組轉換為不同的資料類型。

# Datatypes: np.int32,np.float32,np.float64,np.str_
import numpy as np

# Create an integer array
int_array = np.array([1, 2, 3, 4, 5], dtype=np.int32)

# Convert to float
float_array = int_array.astype(np.float32)

print("Original array:", int_array)
print("Converted array:", float_array)

重塑

它是一個強大的工具,可以在不改變數組資料的情況下改變數組的形狀

import numpy as np

# Create a 1D array
array = np.arange(12)

# Reshape to a 2D array (3 rows x 4 columns)
reshaped_array = array.reshape((3, 4))

Matplotlib

import numpy as np
import matplotlib.pyplot as plt

# Create a random 2D array
data = np.random.rand(10, 10)

# Create a figure with a specific size and resolution
plt.figure(figsize=(8, 6), dpi=100)

# Display the 2D array as an image
plt.imshow(data, cmap='viridis', interpolation='nearest')

# Add a color bar to show the scale of values
plt.colorbar()

# Show the plot
plt.show()

字典

# Creating an empty dictionary
# Maintains ascending order like map in cpp
my_dict = {}

# Creating a dictionary with initial values
my_dict = {'name': 'Alice', 'age': 25, 'city': 'New York'}

# Creating a dictionary using the dict() function
my_dict = dict(name='Alice', age=25, city='New York')

# Accessing a value by key
name = my_dict['name']  # Output: 'Alice'

# Using the get() method to access a value
age = my_dict.get('age')  # Output: 25
country = my_dict.get('country')  # Output: None

# Adding a new key-value pair
my_dict['email'] = 'alice@example.com'

# Updating an existing value
my_dict['age'] = 26

# Removing a key-value pair using pop()
age = my_dict.pop('age')  # Removes 'age' and returns its value

# Getting all keys in the dictionary
keys = my_dict.keys()  # Output: dict_keys(['name', 'email'])

# Getting all values in the dictionary
values = my_dict.values()  # Output: dict_values(['Alice', 'alice@example.com'])

# Iterating over keys
for key in my_dict:
    print(key)

# Iterating over values
for value in my_dict.values():
    print(value)

# Iterating over key-value pairs
for key, value in my_dict.items():
    print(f"{key}: {value}")

預設字典

from collections import defaultdict

d = defaultdict(int)

# Initializes 0 to non-existent keys
d['apple'] += 1
d['banana'] += 2

# Creating an empty set
my_set = set()

# Creating a set with initial values
my_set = {1, 2, 3, 4, 5}

# Creating a set from a list
my_list = [1, 2, 3, 4, 5]
my_set = set(my_list)

# Creating a set from a string
my_set = set('hello')  # Output: {'e', 'h', 'l', 'o'}

# Adding an element to a set
my_set.add(6)  # my_set becomes {1, 2, 3, 4, 5, 6}

# Removing an element from a set (raises KeyError if not found)
my_set.remove(3)  # my_set becomes {1, 2, 4, 5, 6}

# Removing and returning an arbitrary element from the set
element = my_set.pop()  # Returns and removes an arbitrary element

細繩

# Single quotes
str1 = 'Hello'

# Double quotes
str2 = "World"

# Triple quotes for multi-line strings
str3 = '''This is a 
multi-line string.'''

# Raw strings (ignores escape sequences)
raw_str = r'C:\Users\Name'

str1 = 'Hello'

# Accessing a single character
char = str1[1]  # 'e'

# Accessing a substring (slicing)
substring = str1[1:4]  # 'ell'

# Negative indexing
last_char = str1[-1]  # 'o'

# Using + operator
concatenated = 'Hello' + ' ' + 'World'  # 'Hello World'

# Using join method
words = ['Hello', 'World']
concatenated = ' '.join(words)  # 'Hello World'

name = 'Alice'
age = 25

# String formatting
formatted_str = f'My name is {name} and I am {age} years old.'

# Convert to uppercase
upper_str = str1.upper()  # 'HELLO WORLD'

# Convert to lowercase
lower_str = str1.lower()  # 'hello world'

# Convert to capitalize
capital_str = str1.capitalize()  # 'Hello world'

str1 = '  Hello World  '

# Remove leading and trailing whitespace
trimmed = str1.strip()  # 'Hello World'

str1 = 'Hello World Python'

# Split the string into a list of substrings
split_list = str1.split()  # ['Hello', 'World', 'Python']

# Split the string with a specific delimiter
split_list = str1.split(' ')  # ['Hello', 'World', 'Python']

# Join a list of strings into a single string
joined_str = ' '.join(split_list)  # 'Hello World Python'

str1 = 'Hello World'

# Find the position of a substring
pos = str1.find('World')  # 6


str1 = 'Hello123'

# Check if all characters are alphanumeric
is_alnum = str1.isalnum()  # True

# Check if all characters are alphabetic
is_alpha = str1.isalpha()  # False

# Check if all characters are digits
is_digit = str1.isdigit()  # False

# Check if all characters are lowercase
is_lower = str1.islower()  # False

# Check if all characters are uppercase
is_upper = str1.isupper()  # False

保持聯繫!
如果您喜歡這篇文章,請不要忘記在社交媒體上關注我以獲取更多更新和見解:

推特: madhavganesan
Instagram:madhavganesan
領英: madhavganesan

以上是Python 程式碼片段的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境