Lately, I have been trying lots of prompting with large language models (LLMs) like ChatGPT to build apps in Python and JavaScript (Next.js) using OpenAI API, and all I can say is it's producing unimaginable possibilities.
Some of these products you can achieve are:
- Text-to-speech: Converting texts to speech
- Speech to text
- Image generation: Generate or manipulate images with text using DALL-E API
- Producing captions for your images. Check out this Caption Image app
This guide shows you how to use prompts to build a snake game in Python, iterate the responses (the output), and test the code result. If the result doesn't meet your requirements, you prompt again till you get the desired output. Learning prompt engineering skills will help you avoid constant iteration because it'll help ensure the output is the best it can be for the first time.
Let's get started!
Prerequisites
For this tutorial, you do not need to know Python since the generated code will be produced by ChatGPT. Therefore, you only need an account ChatGPT.
Using the free version of ChatGPT is unlikely to get accurate results for your snake game because the free version of ChatGPT uses an older, less capable LLM (GPT-3.5) that is not very good with code. You should upgrade to ChatGPT Plus if you can afford to subscribe.
Another good LLM option to use apart from ChatGPT is the lmarena.
Visit the link and do the following:
- Select "Direct Chat" along the menu bar at the top
- Under the "Choose any model to chat" from the dropdown, select "chatgpt-4o-latest" or "laude-3-opus-20240229".
Creating the Snake Game
For you to have a working game, provide your chosen LLM with the prompt (input) with definitive instructions on the action it should carry out.
Here are the steps to follow to have a working game:
First prompt
I want to create a snake game using Python, what steps do I need to do that?
This prompt will outline the step-by-step guide for you to follow from installing the library, pygame, setting up the game environment, running the game, debugging and optimizing (testing the game and checking for code performance).
Another prompt worth trying out to compile the code is this:
Provide the code for the snake game in Python. The code should include all the details and features described above.
In addition, you can define a prompt to change the background color to make the app prettier, highlight the session in the code, and another prompt to adjust the snake's speed.
<script> // Detect dark theme var iframe = document.getElementById('tweet-1831261279379406971-316'); if (document.body.className.includes('dark-theme')) { iframe.src = "https://platform.twitter.com/embed/Tweet.html?id=1831261279379406971&theme=dark" } </script>
For the complete source code, check this gist.
Conclusion
Prompting is a skill that involves the practice of giving the LLM
instructions and context provided to an AI for a certain task.
This guide demonstrated how to program an app in a natural (human) language to get a functioning working application.
Kindly share your results.
Happy coding!!!
以上是使用 LLM 建構 Python 貪吃蛇遊戲的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

在本教程中,您將從整個系統的角度學習如何處理Python中的錯誤條件。錯誤處理是設計的關鍵方面,它從最低級別(有時是硬件)一直到最終用戶。如果y

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

Dreamweaver CS6
視覺化網頁開發工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

禪工作室 13.0.1
強大的PHP整合開發環境