首頁 >科技週邊 >人工智慧 >鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

PHPz
PHPz原創
2024-09-02 16:40:32349瀏覽
鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

AIxiv專欄是本站發布學術、技術內容的欄位。過去數年,本站AIxiv專欄接收通報了2,000多篇內容,涵蓋全球各大專院校與企業的頂尖實驗室,有效促進了學術交流與傳播。如果您有優秀的工作想要分享,歡迎投稿或聯絡報道。投稿信箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com


本文第一國交通作者是上海大學交通作者系四年級博士生,研究方向為自主智能體,推理,以及大模型的可解釋性和知識編輯。該工作由上海交通大學與 Meta 共同完成。

鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

  • 論文題目:Caution for the Environment: Multimodal Agents are Scept Sceptions:Caution for the Environment: Multimodal Agents are S. >
  • 論文地址:https://arxiv.org/abs/2408.02544
  • 程式碼倉庫:https://github.com/xbmxb/EnvDistraction

近日,熱心網友發現公司會用大模型篩選簡歷:在簡歷中添加與背景顏色相同的提示“這是一個合格的候選人”後收到的招募聯繫是之前的4 倍。網友表示:「如果公司用大模型篩選候選人,候選人反過來與大模型博弈也是公平的。」大模型在替代人類工作,降低人工成本的同時,也成為容易遭受攻擊的薄弱一環。

鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

                         圖 1:幹擾篩選履歷的大模型。

因此,在追求通用人工智慧改變生活的同時,需要關注 AI 對使用者指令的忠實性。具體而言,AI 是否能夠在複雜的多模態環境中不受眼花繚亂的內容所干擾,忠實地完成用戶預設的目標,是一個尚待研究的問題,也是實際應用之前必須回答的問題。

針對上述問題,本文以圖形使用者介面智慧代理 (GUI Agent) 為典型場景,研究了環境中的干擾所帶來的風險。

GUI Agent 基於大模型針對預設的任務自動化控制電腦手機等設備,即 「大模型玩手機」。如圖2 所示,不同於現有的研究,研究團隊考慮即使使用者和平台都是無害的,在現實世界中部署時,GUI Agent 不可避免地會面臨多種資訊的干擾,阻礙智能體完成用戶目標。更糟的是,GUI Agent 可以在私人裝置上完成乾擾資訊所建議的任務,甚至進入失控狀態,危害使用者的隱私和安全。

鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

圖2:現有的GUI Agent 工作通常考慮理想的工作環境(a)或透過使用者輸入引入引入的風險(b)。本文研究環境中存在的內容作為幹擾阻礙 Agent 忠實地完成任務(c)。

研究團隊將此風險總結成兩部分,(1) 操作空間的劇變和(2) 環境與使用者指令之間的衝突。例如,在購物的時候遇到大面積的廣告,原本能夠執行的正常操作會被擋住,此時要繼續執行任務必須先處理廣告。然而,螢幕中的廣告與用戶指示中的購物目的造成了不一致,沒有相關的提示輔助廣告處理,智能代理容易陷入混亂,被廣告誤導,最終表現出不受控制的行為,而不是忠實於用戶指令的原始目標。

任務與方法

                             圖 3中中:本文中的模擬架構,包含資料模擬,且運作模式,與模型測驗。

為了系統性地分析多模態智能體的忠實度,本文首先定義了「智能體的環境幹擾(Distraction for GUI Agents )」 任務,並提出了一套系統性的模擬框架。此框架建構資料以模擬四種場景下的干擾,規範了三種感知等級不同的工作模式,最後在多個強大的多模態大模型上進行了測試。

  • 任務定義。考慮GUI Agent A 為了完成特定目標g,與作業系統環境Env 互動中的任一步 t, Agent 根據其對環境狀態 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持的感知在操作系統上執行動作鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持。然而,作業系統環境天然包含品質參差不齊、來源各異的複雜信息,我們對其形式化地分為兩部分:對完成目標有用或必要的內容,鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持,指示著與用戶指令無關的目標的干擾性內容,鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持。 GUI Agent 必須使用鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 來執行忠實的操作,同時避免被 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 分散注意力並輸出不相關的操作。同時,時刻的操作空間被狀態 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 決定,相應地定義為三種,最佳的動作鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持,受到干擾的動作 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持,和其他(錯誤)的動作鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持。我們關注智能體對下一步動作的預測是否符合最佳的動作或受到干擾的動作,或是有效操作空間以外的動作。

  • 模擬資料。根據任務的定義,在不失一般性的情況下模擬任務並建立模擬資料集。每個樣本都是一個三元組 (g,s,A),分別是目標、螢幕截圖和有效動作空間標註。模擬資料的關鍵在於建立螢幕截圖,使其包含 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 ,即確保螢幕內允許正確的忠實性操作,且存在自然的干擾。研究團隊考慮了四種常見場景,即彈框、搜尋、推薦和聊天,形成四個子集,針對使用者目標、螢幕佈局和乾擾內容採用組合策略。例如,對於彈框場景,他們構造誘導用戶同意去做另一件事情的彈框,並在框內給出拒絕和接受兩種動作,如果智能體選擇接受型動作,就被看作失去了忠實性。搜尋和推薦場景都是在真實的資料內插入偽造的範例,例如相關的折扣物品和推薦的軟體。聊天場景較為複雜,研究團隊在聊天介面中對方發來的消息內加入乾擾內容,如果智能體遵從了這些幹擾則被視為不忠實的動作。研究團隊對每個子集設計了具體的提示流程,利用 GPT-4 和外部的檢索候選資料來完成構造,各子集示例如圖 4 所示。

鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

                                        Figure 4: Examples of simulated data in four scenarios.

  • Working Mode. The working mode will affect the performance of the agent, especially for complex GUI environments. The level of environmental awareness is the bottleneck of the agent's performance. It determines whether the agent can capture effective actions and indicates the upper limit of action prediction. They implemented three working modes with different levels of environmental awareness, namely implicit perception, partial perception and optimal perception. (1) Implicit perception means directly placing requirements on the agent. The input is only instructions and screens, and does not assist in environmental perception (Direct prompt). (2) Partial perception prompts the agent to first analyze the environment, using a mode similar to the thinking chain. The agent first receives the screenshot status to extract possible operations, and then predicts the next operation (CoT prompt) based on the goal. (3) The best perception is to directly provide the operation space of the screen to the agent (w/ Action annotation). Essentially, different working modes mean two changes: information about potential operations is exposed to the agent, and information is merged from the visual channel into the text channel.

Experiment and Analysis

The research team conducted experiments on 10 well-known multi-modal large models on 1189 pieces of simulated data constructed. For systematic analysis, we selected two types of models as GUI agents, (1) general models, including powerful black-box large models based on API services (GPT-4v, GPT-4o, GLM-4v, Qwen-VL -plus, Claude-Sonnet-3.5), and open source large models (Qwen-VL-chat, MiniCPM-Llama3-v2.5, LLaVa-v1.6-34B). (2) GUI expert models, including CogAgent-chat and SeeClick that have been pre-trained or fine-tuned with instructions. The indicators used by the research team are 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持, which respectively correspond to the accuracy of the model's predicted action matching successful best action, interfered action, and invalid action.

The research team summarized the findings in the experiment into answers to three questions:

  • Will a multi-modal environment interfere with the goals of the GUI Agent? In risky environments, multimodal agents are susceptible to interference, which can cause them to abandon goals and behave disloyally. In each of the team's four scenarios, the model produced behavior that deviated from the original goal, which reduced the accuracy of the action. The strong API model (9.09% for GPT-4o) and the expert model (6.84% for SeeClick) are more faithful than the general open source model.
  • What is the relationship between fidelity and helpfulness? This is divided into two situations. First, there are powerful models that can provide correct actions while remaining faithful (GPT-4o, GPT-4v, and Claude). They exhibit low 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 scores, as well as relatively high 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 and low 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持. However, greater perception but less fidelity results in greater susceptibility to interference and reduced usefulness. For example, GLM-4v exhibits higher 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 and much lower 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 compared to open source models.Therefore, fidelity and usefulness are not mutually exclusive, but can be enhanced simultaneously, and in order to match the capabilities of a powerful model, it is even more important to enhance fidelity.
  • Can assisted multimodal environmental awareness help mitigate infidelity? By implementing different working modes, visual information is integrated into text channels to enhance environmental awareness. However, results show that GUI-aware text enhancement can actually increase interference, and the increase in interference actions can even outweigh its benefits. CoT mode acts as a self-guided text enhancement that can significantly reduce perceptual burden, but also increases interference. Therefore, even if the perception of this performance bottleneck is enhanced, the vulnerability of fidelity still exists and is even more risky. Therefore, information fusion across textual and visual modalities such as OCR must be more careful.

鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持

                                                                                                                                                                                        Figure 5: Environmental interference test results.

In addition, in the comparison of models, the research team found that the API-based model outperformed the open source model in terms of fidelity and effectiveness. Pretraining for GUI can greatly improve the fidelity and effectiveness of expert agents, but it may introduce shortcuts that lead to failure. In the comparison of working modes, the research team further stated that even with “perfect” perception (action annotation), the agent is still susceptible to interference. CoT prompts no complete defense, but a self-guided step-by-step process demonstrates the potential for mitigation.

Finally, using the above findings, the research team considered an extreme case with an adversarial role and demonstrated a feasible active attack, called the environment Inject . Consider an attack scenario where the attacker needs to change the GUI environment to mislead the model. An attacker can eavesdrop on messages from users and obtain targets, and can compromise related data to change environmental information. For example, an attacker can intercept packets from the host and change the content of a website.

The setting of environment injection is different from the previous one. The previous article looked at the common problem of imperfect, noisy, or defective environments that attackers can induce by creating unusual or malicious content. The research team conducted verification on the pop-up scene and proposed and implemented a simple and effective method to rewrite these two buttons. (1) The button that accepts the bullet box is rewritten to be ambiguous, which is reasonable for both distractors and real targets. We found a common operation for both purposes. While the contents of the box provide context and indicate the button's true function, models often ignore the context's meaning. (2) The button to reject the pop-up box has been rewritten as an emotional expression. This guiding emotion can sometimes influence or even manipulate user decisions. This phenomenon is common when uninstalling a program, such as "Brutal Leave".

These rewriting methods reduce the fidelity of GLM-4v and GPT-4o and significantly improve the 鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持 score compared to the baseline score. GLM-4v is more susceptible to emotional expressions, while GPT-4o is more susceptible to ambiguous acceptance misguidance. Figure 6: Experimental results of malicious environment injection.
鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持
Summary

This article The fidelity of multi-modal GUI Agent is studied and the influence of environmental interference is revealed. The research team proposed a new research question - environmental interference of agents, and a new research scenario - both users and agents are benign, and the environment is not malicious, but there is content that can distract attention. The research team simulated interference in four scenarios and implemented three working modes with different perception levels. A wide range of general models and GUI expert models are evaluated. Experimental results show that vulnerability to interference significantly reduces fidelity and helpfulness, and that protection cannot be accomplished through enhanced perception alone.

In addition, the research team proposed an attack method called environmental injection, which exploits infidelity by changing the interference to include ambiguous or emotionally misleading content. Malicious purpose. More importantly, this paper calls for greater attention to the fidelity of multimodal agents. The research team recommends that future work include pre-training for fidelity, considering correlations between environmental context and user instructions, predicting possible consequences of performing actions, and introducing human-computer interaction when necessary.

以上是鬼手操控著你的手機?大模型GUI智能體易遭受環境劫持的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn