介紹
數據科學最終在我們這個技術驅動的世界中發揮著舉足輕重的作用。這一切都是為了利用數學、電腦程式設計和特定主題的數據的混合,從龐大的數據集中找到有價值的數據。本課程將為您提供清晰的數據科學圖表,計算您所需的主要想法、工作替代方案和關鍵能力。
什麼是數據科學?
數據科學是一個結合多種方法從數據中獲取有價值資訊的領域。它使用邏輯策略、計算和框架來理解有組織和無組織的資料。資料科學家利用不同的工具來檢查資料、發現模式並做出預測。
數據科學的關鍵概念
資料收集:從資料庫、API 和網頁抓取等獨特位置收集資料。
資料清理和準備:透過修復缺失值、錯誤和不一致,將原始資料轉換為易於使用的格式。
探索性資料分析(EDA): 對資料進行初步調查,以發現模式、發現異常、檢驗假設並藉助匯總統計資料和圖形表示檢查假設.
特徵工程:建立或更改資料特徵以使模型更好地工作並用於監督學習。
模型建構:選擇並建立機器學習模型來解決特定問題。
模型評估:使用不同的方法和指標來檢查模型的表現。
部署:將模型投入實際使用。
數據科學的職業道路
資料科學為不同的興趣和技能提供不同的職業選擇。一些常見的職業包括:
- 資料科學家: 處理從收集資料到建立機器學習模型的所有事務。
- 資料分析師:專注於研究資料以發現見解和趨勢以及視覺化資料。
- 資料工程師:建置和維護儲存和監督資料的資料管道。
- 機器學習工程師: 擅長創建和使用機器學習演算法。
- 資料架構師:設計與管理公司的整體資料結構。
資料科學家的基本技能
要在資料科學領域取得好成績,您需要技術和軟技能,包括:
- 程式語言:了解Python和R,這是資料科學中使用的主要程式語言。
- 統計:了解用於分析和建模資料的基本統計資料。
- 機器學習:了解不同的機器學習方法和演算法來提出模型。
- 資料視覺化:能夠透過從資料中獲得的圖表和圖形清楚地展示發現。
- 解決問題和批判性思考:分析問題並尋找解決方案。
- 溝通技巧:向他人闡明並清楚解釋您的發現。
結論
資料科學是一個充滿機會的發展領域。透過學習關鍵技能並了解重點,您可以在該領域開始充實的職業生涯。跟上現代進步將為您在這個不斷變化的領域保持領先地位提供幫助。
以上是'數據科學終極指南。”的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

Python是數據科學和處理的最愛,為高性能計算提供了豐富的生態系統。但是,Python中的並行編程提出了獨特的挑戰。本教程探討了這些挑戰,重點是全球解釋

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

本教程演示了在Python 3中創建自定義管道數據結構,利用類和操作員超載以增強功能。 管道的靈活性在於它能夠將一系列函數應用於數據集的能力,GE

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3漢化版
中文版,非常好用