首頁  >  文章  >  後端開發  >  比較優化如何讓 Python 排序更快

比較優化如何讓 Python 排序更快

WBOY
WBOY原創
2024-08-28 18:32:211124瀏覽

在本文中,術語 Python 和 CPython(該語言的參考實作)可以互換使用。本文專門討論 CPython,不涉及 Python 的任何其他實作。

Python 是一門美麗的語言,它允許程式設計師用簡單的術語表達他們的想法,而將實際實現的複雜性拋在腦後。

它抽像出來的東西之一就是排序。

你可以輕鬆找到「Python中排序是如何實現的?」這個問題的答案。這幾乎總是回答另一個問題:「Python 使用什麼排序演算法?」。

但是,這通常會留下一些有趣的實作細節。

有一個實現細節我認為討論得不夠充分,儘管它是七年前在 python 3.7 中引入的:

sorted() 和 list.sort() 已針對常見情況進行了最佳化,速度提高了 40-75%。 (由 Elliot Gorokhovsky 在 bpo-28685 中貢獻。)

但是在我們開始之前...

簡單重新介紹 Python 中的排序

當你需要在Python中對清單進行排序時,你有兩個選擇:

  • 列表方法:list.sort(*, key=None, reverse=False),對給定列表進行就地排序
  • 內建函數:sorted(iterable/*key=Nonekey=None

key=None

>),傳回排序清單而不修改其參數


如果需要對任何其他內建可迭代物件進行排序,則無論作為參數傳遞的可迭代物件或生成器的類型為何,都只能使用排序。

def sorted(iterable: Iterable[Any], key=None, reverse=False):
    new_list = list(iterable)
    new_list.sort(key=key, reverse=reverse)
    return new_list
sorted 總是傳回一個列表,因為它內部使用了 list.sort。

這是用純 python 重寫的 CPython 排序 C 實現的大致等效項:

是的,就這麼簡單。

Python 如何讓排序更快

如 Python 內部排序文件所說:

有時可以用更快的特定型別比較來取代較慢的通用 PyObject_RichCompareBool

簡而言之,這個最佳化可以描述如下:

當列表是同質的時,Python 使用

特定於類型的比較函數


什麼是同質列表?

homogeneous = [1, 2, 3, 4]
同構列表是僅包含一種類型的元素的清單。


例如:

heterogeneous = [1, "2", (3, ), {'4': 4}]

另一方面,這不是一個同質列表:

有趣的是,官方 Python 教學指出:

列表是可變的,它們的元素

通常是同質的

並且透過迭代列表來存取

關於元組的旁注 同一個教學指出:

元組是不可變的,且
通常包含異構序列

元素

因此,如果您想知道何時使用元組或列表,這裡有一條經驗法則:

如果元素類型相同,則使用列表,否則使用元組

等等,那數組呢?

Python 為數值實作了同構數組容器物件。

但是,從 python 3.12 開始,陣列沒有實作自己的排序方法。

對它們進行排序的唯一方法是使用排序,它在內部從數組中創建一個列表,並在此過程中刪除任何與類型相關的資訊。

為什麼使用特定於類型的比較函數有幫助?
  • Python 中的比較成本很高,因為 Python 在進行任何實際比較之前會執行各種檢查。
  • 以下是在 Python 中比較兩個值時底層發生的情況的簡化解釋:
    • Python 檢查傳遞給比較函數的值是否不為 NULL
    • 如果值的類型不同,但右操作數是左操作數的子類型,Python 使用右操作數的比較函數,但相反(例如,它將使用 )
    • 如果值具有相同類型或不同類型但都不是另一個的子類型:
    • Python 會先嘗試左操作數的比較函數
    • 如果失敗,它將嘗試右操作數的比較函數,但相反。
  • 如果也失敗,比較是相等或不等,它將傳回身分比較(對於引用記憶體中相同物件的值為 True)

否則,會引發 TypeError How Comparison Optimization Makes Python Sorting Faster

除此之外,每種類型自己的比較函數都會實現額外的檢查。

For example, when comparing strings, Python will check if the string characters take more than one byte of memory, and float comparison will compare a pair of float's and a float and an int differently.

A more detailed explanation and diagram can be found here: Adding Data-Aware Sort Optimizations to CPython

Before this optimization was introduced, Python had to execute all this various type-specific and non-type-specific checks every time two values were compared during sorting.

Checking List Element's Types in Advance

There's no magical way to know if all the elements of a list are of the same type other than to iterate over the list and check each element.

Python does almost exactly that — checking the types of sorting keys generated by key function passed to list.sort or sorted as a parameter

Constructing a List of Keys

If a key function is provided, Python uses it to construct a list of keys, otherwise it uses the list's own values as sorting keys.

In an oversimplified manner, keys construction can be expressed as the following python code.

if key is None:
    keys = list_items
else:
    keys = [key(list_item) for list_item in list_item]

Note, that keys used internally in CPython are a C array of CPython object references, and not a Python list

Once the keys are constructed, Python checks their types.

Checking Key's Type

When checking the types of keys, Python's sorting algorithm tries to determine if all elements in the keys array are either str, int, float or tuple, or simply of the same type, with some constraints for base types.

It's worth noting that checking the types of the keys adds some extra work up front. Python does this because it usually pays off by making the actual sorting faster, especially for longer lists.

int constraints

int should not be a bignum

Practically this means that for this optimization to work, integer should be less than 2^30 - 1 (this may vary depending on the platform)

As a side note, here is a great article which explains how Python handles big integers: # How python implements super long integers?

str constraints

All characters of a string should take less than 1 byte of memory, meaning that they should be represented by integer values in the range of 0-255

In practice, this means that strings should consist only of Latin characters, spaces, and some special characters found in the ASCII table.

float constraints

There are no constraints for floats in order for this optimization to work.

tuple constraints

  • Only the first element's type is checked
  • This element itself should not be a tuple itself
  • If all tuples share the same type for their first element, the comparison optimization is applied to them
  • All other elements are compared as usual

How Can I Apply This Knowledge?

First of all, isn’t it fascinating to know?

Secondly, mentioning this knowledge could be a nice touch in a Python Developer interview.

As for actual code development, understanding this optimization can help you improve sorting performance.

Optimize by Selecting the Type of Values Wisely

According to the benchmark in the PR that introduced this optimization, sorting a list that consists only of floats rather than a list of floats with even a single integer at the end is almost twice as fast.

So when it's time to optimize, transforming list like this

floats_and_int = [1.0, -1.0, -0.5, 3]

Into list that looks like this

just_floats = [1.0, -1.0, -0.5, 3.0] # note that 3.0 is a float now

might improve performance.

Optimize by Using Keys for Lists of Objects

While Python's sorting optimization works well with built-in types, it's important to understand how it interacts with custom classes.

When sorting objects of custom classes, Python relies on the comparison methods you define, such as __lt__ (less than) or __gt__ (greater than).

However, the type-specific optimization doesn't apply to custom classes.
Python will always use the general comparison method for these objects.

Here's an example:

class MyClass:
    def __init__(self, value): 
        self.value = value 

    def __lt__(self, other): 
        return self.value < other.value 

my_list = [MyClass(3), MyClass(1), MyClass(2)] 
sorted_list = sorted(my_list)

In this case, Python will use the __lt__ method for comparisons, but it won't benefit from the type-specific optimization. The sorting will still work correctly, but it may not be as fast as sorting built-in types.

If performance is critical when sorting custom objects, consider using a key function that returns a built-in type:

sorted_list = sorted(my_list, key=lambda x: x.value)

Afterword

Premature optimization, especially in Python, is evil.

您不應該圍繞 CPython 中的特定優化來設計整個應用程序,但了解這些優化是有好處的:充分了解您的工具是成為更熟練的開發人員的一種方式。

留意這些最佳化可以讓你在情況需要時利用它們,特別是當效能變得至關重要時:

考慮一個基於時間戳進行排序的場景:使用同構整數列表(Unix 時間戳記)而不是日期時間物件可以有效地利用此最佳化。

但是,重要的是要記住,程式碼的可讀性和可維護性應優先於此類最佳化。

雖然了解這些底層細節很重要,但欣賞 Python 的高階抽像也同樣重要,正是這些抽象使其成為一種高效的語言。

Python 是一門令人驚嘆的語言,探索其深度可以幫助您更好地理解它並成為更好的 Python 程式設計師。

以上是比較優化如何讓 Python 排序更快的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn