首頁 >後端開發 >Python教學 >LangChain部分利用LangChain中的記憶體和儲存:綜合指南

LangChain部分利用LangChain中的記憶體和儲存:綜合指南

WBOY
WBOY原創
2024-08-21 22:14:251016瀏覽

LangChain Part  Leveraging Memory and Storage in LangChain: A Comprehensive Guide

LangChain Part 4 - Leveraging Memory and Storage in LangChain: A Comprehensive Guide

Code can be found here: GitHub - jamesbmour/blog_tutorials:

In the ever-evolving world of conversational AI and language models, maintaining context and efficiently managing information flow are critical components of building intelligent applications. LangChain, a powerful framework designed for working with large language models (LLMs), offers robust tools for memory management and data persistence, enabling the creation of context-aware systems.

In this guide, we'll delve into the nuances of leveraging memory and storage in LangChain to build smarter, more responsive applications.

1. Working with Memory in LangChain

Memory management in LangChain allows applications to retain context, making interactions more coherent and contextually relevant. Let’s explore the different memory types and their use cases.

1.1. Types of Memory

LangChain provides various memory types to address different scenarios. Here, we’ll focus on two key types:

ConversationBufferMemory

This memory type is ideal for short-term context retention, capturing and recalling recent interactions in a conversation.

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory()
memory.save_context({"input": "Hi, I'm Alice"}, {"output": "Hello Alice, how can I help you today?"})
memory.save_context({"input": "What's the weather like?"}, {"output": "I'm sorry, I don't have real-time weather information. Is there anything else I can help you with?"})

print(memory.load_memory_variables({}))

ConversationSummaryMemory

For longer conversations, ConversationSummaryMemory is a great choice. It summarizes key points, maintaining context without overwhelming detail.

from langchain.memory import ConversationSummaryMemory
from langchain.llms import Ollama 

llm = Ollama(model='phi3',temperature=0)
memory = ConversationSummaryMemory(llm=llm)
memory.save_context({"input": "Hi, I'm Alice"}, {"output": "Hello Alice, how can I help you today?"})
memory.save_context({"input": "I'm looking for a good Italian restaurant"}, {"output": "Great! I'd be happy to help you find a good Italian restaurant. Do you have any specific preferences or requirements, such as location, price range, or specific dishes you're interested in?"})

print(memory.load_memory_variables({}))

1.2. Choosing the Right Memory Type for Your Use Case

Selecting the appropriate memory type depends on several factors:

  • Duration and Complexity: Short sessions benefit from detailed context retention with ConversationBufferMemory, while long-term interactions may require summarization via ConversationSummaryMemory.
  • Detail vs. Overview: Determine whether detailed interaction history or high-level summaries are more valuable for your application.
  • Performance: Consider the trade-offs between the memory size and retrieval speed.

Use Cases:

  • ConversationBufferMemory: Ideal for quick customer support or FAQ-style interactions.
  • ConversationSummaryMemory: Best suited for long-term engagements like project management or ongoing customer interactions.

1.3. Integrating Memory into Chains and Agents

Memory can be seamlessly integrated into LangChain chains and agents to enhance conversational capabilities.

from langchain.chains import ConversationChain  
from langchain.memory import ConversationBufferMemory
# llm = OpenAI(temperature=0)
memory = ConversationBufferMemory()
conversation = ConversationChain(
    llm=llm,
    memory=memory,
    verbose=True
)

conversation.predict(input="Hi, I'm Alice")
conversation.predict(input="What's my name?")

This example illustrates how ConversationBufferMemory can be used to remember previous interactions, enabling more natural conversations.

2. Persisting and Retrieving Data

Persistent storage ensures that conversation history and context are maintained across sessions, enabling continuity in interactions.

2.1. Storing Conversation History and State

For basic persistence, you can use file-based storage with JSON:

import json

class PersistentMemory:
    def __init__(self, file_path):
        self.file_path = file_path
        self.load_memory()

    def load_memory(self):
        try:
            with open(self.file_path, 'r') as f:
                self.chat_memory = json.load(f)
        except FileNotFoundError:
            self.chat_memory = {'messages': []}

    def save_memory(self):
        with open(self.file_path, 'w') as f:
            json.dump({'messages': self.chat_memory['messages']}, f)

# Usage
memory = PersistentMemory(file_path='conversation_history.json')
print(memory.chat_memory)

This method allows you to persist conversation history in a simple, human-readable format.

2.2. Integrating with Databases and Storage Systems

For more scalable and efficient storage, integrating with databases like SQLite is recommended:

import sqlite3

class SQLiteMemory:
    def __init__(self, db_path):
        self.db_path = db_path
        self.conn = sqlite3.connect(db_path)
        self.create_table()

    def create_table(self):
        cursor = self.conn.cursor()
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS conversations
            (id INTEGER PRIMARY KEY, input TEXT, output TEXT)
        ''')
        self.conn.commit()

    def save_context(self, inputs, outputs):
        cursor = self.conn.cursor()
        cursor.execute('INSERT INTO conversations (input, output) VALUES (?, ?)',
                       (inputs['input'], outputs['output']))
        self.conn.commit()

    def load_memory_variables(self, inputs):
        cursor = self.conn.cursor()
        cursor.execute('SELECT input, output FROM conversations ORDER BY id DESC LIMIT 10')
        rows = cursor.fetchall()
        history = "\\n".join([f"Human: {row[0]}\\nAI: {row[1]}" for row in reversed(rows)])
        return {"history": history }

# Usage
memory = SQLiteMemory('conversation_history.db')

print(memory.load_memory_variables({}))

3 Optimizing Memory Usage and Performance

To ensure your application remains responsive, consider these optimization strategies:

  • Efficient Data Structures: Use structures like deque for managing fixed-size buffers.
  • Caching Strategies: Reduce database queries by implementing caching for frequently accessed data.
  • Data Pruning: Regularly prune or summarize old data to maintain a manageable memory size.

Here’s an example of a memory class with basic caching:

import time

class CachedSQLiteMemory(SQLiteMemory):
    def __init__(self, db_path, cache_ttl=60):
        super().__init__(db_path)
        self.cache = None
        self.cache_time = 0
        self.cache_ttl = cache_ttl

    def load_memory_variables(self, inputs):
        current_time = time.time()
        if self.cache is None or (current_time - self.cache_time) > self.cache_ttl:
            var = self.cache
            self.cache = super().load_memory_variables(inputs)
            self.cache_time = current_time
            return self.cache

memory = CachedSQLiteMemory('conversation_history.db', cache_ttl=30)

This implementation caches the results of database queries for a specified time, reducing the load on the database and improving performance for applications that frequently access memory data.

Conclusion

Effective memory management is a cornerstone of building intelligent, context-aware conversational AI applications. LangChain provides a flexible and powerful framework for managing memory, allowing developers to tailor memory types to specific use cases, implement persistent storage solutions, and optimize performance for large-scale applications.

透過選擇正確的記憶體類型、整合持久性儲存並利用自訂記憶體類別和快取策略等先進技術,您可以建立複雜的AI 系統,即使在規模和複雜性方面也能維護上下文、改善使用者體驗並高效運作互動次數不斷增加。

有了這些可用的工具和技術,您就可以充分利用 LangChain 的全部潛力來創建響應式、智慧和情境感知的人工智慧應用程式。無論您是開發客戶支援機器人、虛擬助理,還是複雜的對話系統,掌握 LangChain 中的記憶體和儲存都將是您成功的關鍵因素。

如果你想支持我的寫作或買瓶啤酒給我:
https://buymeacoffee.com/bmours

以上是LangChain部分利用LangChain中的記憶體和儲存:綜合指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn