Python 的 attrs 庫對於希望簡化類別創建並減少樣板程式碼的開發人員來說是一個遊戲規則改變者。這個函式庫甚至受到 NASA 的信任。
attrs 由 Hynek Schlawack 於 2015 年創建,因其能夠自動生成特殊方法並提供乾淨的聲明式方式來定義類,而迅速成為 Python 開發人員最喜歡的工具。
資料類別是屬性的子集。
為什麼 attrs 有用:
安裝:
要開始使用 attrs,您可以使用 pip 安裝它:
pip install attrs
基本用法:
這是一個如何使用 attrs 定義類別的簡單範例:
import attr @attr.s class Person: name = attr.ib() age = attr.ib() # Creating an instance person = Person("Alice", 30) print(person) # Person(name='Alice', age=30)
attrs 會自動為您的類別產生 init、repr 和 eq 方法:
@attr.s class Book: title = attr.ib() author = attr.ib() year = attr.ib() book1 = Book("1984", "George Orwell", 1949) book2 = Book("1984", "George Orwell", 1949) print(book1) # Book(title='1984', author='George Orwell', year=1949) print(book1 == book2) # True
import attr from typing import List @attr.s class Library: name = attr.ib(type=str) books = attr.ib(type=List[str], default=attr.Factory(list)) capacity = attr.ib(type=int, default=1000) library = Library("City Library") print(library) # Library(name='City Library', books=[], capacity=1000)
import attr def must_be_positive(instance, attribute, value): if value <= 0: raise ValueError("Value must be positive") @attr.s class Product: name = attr.ib() price = attr.ib(converter=float, validator=[attr.validators.instance_of(float), must_be_positive]) product = Product("Book", "29.99") print(product) # Product(name='Book', price=29.99) try: Product("Invalid", -10) except ValueError as e: print(e) # Value must be positive
import attr @attr.s class User: username = attr.ib() _password = attr.ib(repr=False) # Exclude from repr @property def password(self): return self._password @password.setter def password(self, value): self._password = hash(value) # Simple hashing for demonstration user = User("alice", "secret123") print(user) # User(username='alice')
@attr.s(frozen=True) # slots=True is the default class Point: x = attr.ib() y = attr.ib() point = Point(1, 2) try: point.x = 3 # This will raise an AttributeError except AttributeError as e: print(e) # can't set attribute
import attr import uuid @attr.s class Order: id = attr.ib(factory=uuid.uuid4) items = attr.ib(factory=list) total = attr.ib(init=False) def __attrs_post_init__(self): self.total = sum(item.price for item in self.items) @attr.s class Item: name = attr.ib() price = attr.ib(type=float) order = Order(items=[Item("Book", 10.99), Item("Pen", 1.99)]) print(order) # Order(id=UUID('...'), items=[Item(name='Book', price=10.99), Item(name='Pen', price=1.99)], total=12.98)
Library | Features | Performance | Community |
---|---|---|---|
attrs | Automatic method generation, attribute definition with types and default values, validators and converters | Better performance than manual code | Active community |
pydantic | Data validation and settings management, automatic method generation, attribute definition with types and default values, validators and converters | Good performance | Active community |
dataclasses | Built into Python 3.7+, making them more accessible | Tied to the Python version | Built-in Python library |
attrs and dataclasses are faster than pydantic1.
Performance:
attrs generally offers better performance than manually written classes or other libraries due to its optimized implementations.
Real-world example:
from attr import define, Factory from typing import List, Optional @define class Customer: id: int name: str email: str orders: List['Order'] = Factory(list) @define class Order: id: int customer_id: int total: float items: List['OrderItem'] = Factory(list) @define class OrderItem: id: int order_id: int product_id: int quantity: int price: float @define class Product: id: int name: str price: float description: Optional[str] = None # Usage customer = Customer(1, "Alice", "alice@example.com") product = Product(1, "Book", 29.99, "A great book") order_item = OrderItem(1, 1, 1, 2, product.price) order = Order(1, customer.id, 59.98, [order_item]) customer.orders.append(order) print(customer)
attrs is a powerful library that simplifies Python class definitions while providing robust features for data validation and manipulation. Its ability to reduce boilerplate code, improve readability, and enhance performance makes it an invaluable tool for Python developers.
Community resources:
Try attrs in your next project and experience its benefits firsthand. Share your experiences with the community and contribute to its ongoing development. Happy coding!
https://stefan.sofa-rockers.org/2020/05/29/attrs-dataclasses-pydantic/ ↩
以上是為什麼你應該更多地使用 attrs的詳細內容。更多資訊請關注PHP中文網其他相關文章!