搜尋
首頁後端開發Python教學使用開源模型建立您自己的自訂 LLM 代理程式 (llama)

Create your own Custom LLM Agent Using Open Source Models (llama)

在本文中,我們將學習如何建立一個使用在我們的 PC 上本地運行的開源 llm (llama3.1) 的自訂代理程式。我們還將使用 Ollama 和 LangChain。

大綱

  • 安裝 Ollama
  • 拉模型
  • 服務模型
  • 新建一個資料夾,用程式碼編輯器開啟
  • 建立並啟動虛擬環境
  • 安裝 langchain langchain-ollama
  • 使用 Python 中的開源模型建立自訂代理程式
  • 結論

安裝奧拉瑪

按照 GitHub README 中基於您作業系統類型的說明安裝 Ollama:

https://github.com/ollama/ollama

我使用的是基於 Linux 的 PC,因此我將在終端機中執行以下命令:

curl -fsSL https://ollama.com/install.sh | sh

拉模型

透過以下指令取得可用的LLM模型:

ollama pull llama3.1

這將下載模型的預設標記版本。通常,預設值指向最新、最小尺寸參數模型。在這種情況下,它將是 llama3.1:8b 模型。

要下載模型的其他版本,您可以造訪:https://ollama.com/library/llama3.1 並選擇要安裝的版本,然後使用模型及其版本號碼執行 ollama pull 命令。例:llama pull llama3.1:70b

在 Mac 上,模型將下載到 ~/.ollama/models

在 Linux(或 WSL)上,模型將儲存在 /usr/share/ollama/.ollama/models

服務模式

執行以下命令啟動 ollama,無需執行桌面應用程式。

ollama serve

所有模型都會自動在 localhost:11434

上提供服務

新建一個資料夾,用程式碼編輯器打開

在電腦上建立一個新資料夾,然後使用 VS Code 等程式碼編輯器開啟它。

創建並啟動虛擬環境

開啟終端機。使用以下命令建立虛擬環境.venv並啟動它:

python3 -m venv .venv
source .venv/bin/activate

安裝 langchain langchain-ollama

執行以下命令來安裝 langchain 和 langchain-ollama:

pip install -U langchain langchain-ollama

上面的指令將安裝或升級Python中的LangChain和LangChain-Ollama套件。 -U 標誌確保安裝這些軟體包的最新版本,替換任何可能已經存在的舊版本。

在 Python 中使用開源模型建立自訂代理

建立一個Python檔案例如:main.py並加入以下程式碼:

from langchain_ollama import ChatOllama
from langchain.agents import tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents.format_scratchpad.openai_tools import (
    format_to_openai_tool_messages,
)
from langchain.agents import AgentExecutor
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser


llm = ChatOllama(
            model="llama3.1",
            temperature=0,
            verbose=True
        )

@tool
def get_word_length(word: str) -> int:
    """Returns the length of a word."""
    return len(word)


tools = [get_word_length]



prompt = ChatPromptTemplate.from_messages(
            [
                (
                    "system",
                    "You are very powerful assistant",
                ),
                ("user", "{input}"),
                MessagesPlaceholder(variable_name="agent_scratchpad"),
            ]
        )

llm_with_tools = llm.bind_tools(tools)

agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_tool_messages(
            x["intermediate_steps"]
        ),
    }
    | prompt
    | llm_with_tools
    | OpenAIToolsAgentOutputParser()
)

# Create an agent executor by passing in the agent and tools
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({"input": "How many letters in the word educa"})

if result:
    print(f"[Output] --> {result['output']}")
else:
    print('There are no result..')

上面的程式碼片段使用ChatOllama模型(llama3.1)設定了一個LangChain代理來處理使用者輸入並利用計算字長的自訂工具。它為代理定義提示模板,將工具綁定到語言模型,並建立處理輸入和格式化中間步驟的代理。最後,它建立一個 AgentExecutor 以使用特定輸入呼叫代理。我們傳遞一個簡單的問題來詢問“educa 這個詞中有多少個字母”,然後我們打印輸出或指示是否未找到結果。

當我們運行時,我們得到以下結果:

> Entering new AgentExecutor chain...

Invoking: `get_word_length` with `{'word': 'educa'}`


5The word "educa" has 5 letters.

> Finished chain.
[Output] --> The word "educa" has 5 letters.

您看到代理程式使用模型 (llama3.1) 正確呼叫工具來取得單字中的字母數。

結論

感謝您的閱讀。

在此處查看 Ollama 儲存庫:https://github.com/ollama/ollama

以上是使用開源模型建立您自己的自訂 LLM 代理程式 (llama)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),