搜尋
首頁後端開發Python教學Pydantic • 處理驗證和清理數據

Pydantic • Dealing with validating and sanitizing data

自從我開始程式設計以來,我主要使用結構化和流程範例,因為我的任務需要更實用和直接的解決方案。在處理資料擷取時,我必須轉向新的範式才能實現更有組織的程式碼。

這種必要性的一個例子是在抓取任務期間,當我需要捕獲最初是我知道如何處理的類型的特定數據時,但突然間,它要么不存在,要么在捕獲過程中以不同的類型出現.

因此,我必須添加一些 if'stry 和 catch 區塊來檢查資料是 int 還是 string ...後來發現沒有捕獲到任何內容,None等等。使用字典時,我最終在以下情況下保存了一些無趣的「預設資料」:

data.get(values, 0)

好吧,令人困惑的錯誤訊息肯定必須停止出現。

這就是 Python 的動態性。變數可以隨時變更其類型,直到您需要更清楚地了解正在使用的類型為止。然後突然出現一堆信息,現在我正在閱讀如何處理數據驗證,IDE 幫助我處理類型提示和有趣的 pydantic 庫。

現在,在資料操作等任務中,透過新的範例,我可以擁有明確聲明其類型的對象,以及允許驗證這些類型的庫。如果出現問題,透過查​​看更好描述的錯誤訊息來調試會更容易。


派丹提克

所以,這是 Pydantic 文件。有更多疑問,歡迎諮詢。

基本上,如我們所知,我們從以下開始:

pip install pydantic

然後,假設我們希望從包含這些電子郵件的來源中捕獲電子郵件,其中大多數看起來像這樣:「xxxx@xxxx.com」。但有時,它可能是這樣的:「xxxx@」或「xxxx」。我們對應該捕獲的電子郵件格式毫無疑問,因此我們將使用 Pydantic 驗證此電子郵件字串:

from pydantic import BaseModel, EmailStr

class Consumer(BaseModel):
    email: EmailStr
    account_id: int

consumer = Consumer(email="teste@teste", account_id=12345)

print(consumer)

請注意,我使用了可選的依賴項“email-validator”,透過 pip install pydantic[email] 安裝。如我們所知,當您執行程式碼時,錯誤將是無效的電子郵件格式「teste@teste」:

Traceback (most recent call last):
  ...
    consumer = Consumer(email="teste@teste", account_id=12345)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  ...: 1 validation error for Consumer
email
  value is not a valid email address: The part after the @-sign is not valid. It should have a period. [type=value_error, input_value='teste@teste', input_type=str]

使用可選依賴項來驗證資料很有趣,就像創建我們自己的驗證一樣,Pydantic 透過 field_validator 允許這樣做。因此,我們知道 account_id 必須為正且大於零。如果不同,Pydantic 警告有異常(值錯誤)會很有趣。程式碼將是:

from pydantic import BaseModel, EmailStr, field_validator

class Consumer(BaseModel):
    email: EmailStr
    account_id: int

    @field_validator("account_id")
    def validate_account_id(cls, value):
        """Custom Field Validation"""
        if value 





<pre class="brush:php;toolbar:false">$ python capture_emails.py
Traceback (most recent call last):
...
    consumer = Consumer(email="teste@teste.com", account_id=0)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...: 1 validation error for Consumer
account_id
  Value error, account_id must be positive: 0 [type=value_error, input_value=0, input_type=int]
    For further information visit https://errors.pydantic.dev/2.8/v/value_error

現在,使用正確的值來運行程式碼:

from pydantic import BaseModel, EmailStr, field_validator

class Consumer(BaseModel):
    email: EmailStr
    account_id: int

    @field_validator("account_id")
    def validate_account_id(cls, value):
        """Custom Field Validation"""
        if value 





<pre class="brush:php;toolbar:false">$ python capture_emails.py
email='teste@teste.com' account_id=12345

對嗎? !

我還閱讀了一些有關本機「dataclasses」模組的內容,該模組更簡單一些,並且與 Pydantic 有一些相似之處。然而,Pydantic 更適合處理需要驗證的更複雜的資料模型。 Dataclasses 原生包含在 Python 中,而 Pydantic 還沒有——至少現在還沒有。

以上是Pydantic • 處理驗證和清理數據的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

在Python的上下文中定義'數組”和'列表”。在Python的上下文中定義'數組”和'列表”。Apr 24, 2025 pm 03:41 PM

Inpython,一個“列表” isaversatile,mutableSequencethatCanholdMixedDatateTypes,而“陣列” isamorememory-sepersequeSequeSequeSequeSequeRingequiringElements.1)列表

Python列表是可變還是不變的?那Python陣列呢?Python列表是可變還是不變的?那Python陣列呢?Apr 24, 2025 pm 03:37 PM

pythonlistsandArraysareBothable.1)列表Sareflexibleandsupportereceneousdatabutarelessmory-Memory-Empefficity.2)ArraysareMoremoremoremoreMemoremorememorememorememoremorememogeneSdatabutlesserversEversementime,defteringcorcttypecrecttypececeDepeceDyusagetoagetoavoavoiDerrors。

Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。