首頁  >  文章  >  後端開發  >  CSV 檔案處理基準測試:Golang、NestJS、PHP、Python

CSV 檔案處理基準測試:Golang、NestJS、PHP、Python

WBOY
WBOY原創
2024-08-12 22:34:02982瀏覽

介紹

高效處理大型 CSV 檔案是許多應用程式中的常見要求,從資料分析到 ETL(提取、轉換、載入)過程。在本文中,我想對四種流行程式語言(Golang、帶有 NestJS 的 NodeJS、PHP 和 Python)在 MacBook Pro M1 上處理大型 CSV 檔案的效能進行基準測試。我的目標是確定哪種語言可以為該任務提供最佳效能。

測試環境

硬體:MacBook Pro M1,256GB SSD,8GB RAM

軟體:

  • macOS 索諾瑪 14.5
  • PHP 8.3.6
  • Go 語言 1.22.4
  • Node.js 22.0.0 與 NestJS
  • Python 3.12.3

測試數據

我使用了一個名為 sales_data.csv 的合成 CSV 文件,其中包含大約 100 萬行,每行都包含交易詳細信息,例如 transaction_id、product_id、數量、價格和時間戳。

任務說明

對於每種語言,腳本執行以下任務:

  1. 讀取 CSV 檔案。
  2. 計算總銷售額。
  3. 辨識銷量最高的產品。

執行

以下是每種語言使用的腳本:

Go 語言腳本:

sales.go

package main

import (
    "encoding/csv"
    "fmt"
    "os"
    "strconv"
    "time"
)

func main() {
    start := time.Now()

    file, err := os.Open("../generate-csv/sales_data.csv")
    if err != nil {
        fmt.Println("Error:", err)
        return
    }
    defer file.Close()

    reader := csv.NewReader(file)
    _, _ = reader.Read() // Skip header

    totalSales := 0.0
    productSales := make(map[string]float64)

    for {
        line, err := reader.Read()
        if err != nil {
            break
        }
        productID := line[1]
        quantity, _ := strconv.Atoi(line[2])
        price, _ := strconv.ParseFloat(line[3], 64)
        total := float64(quantity) * price

        totalSales += total
        productSales[productID] += total
    }

    var topProduct string
    var topSales float64
    for product, sales := range productSales {
        if sales > topSales {
            topProduct = product
            topSales = sales
        }
    }

    elapsed := time.Since(start)
    fmt.Printf("Golang Execution time: %s\n", elapsed)
    fmt.Printf("Total Sales: $%.2f\n", totalSales)
    fmt.Printf("Top Product: %s with sales $%.2f\n", topProduct, topSales)
}

NestJS腳本:

csv.service.ts

import { Injectable } from '@nestjs/common';
import * as fs from 'fs';
import * as fastcsv from 'fast-csv';

// path file CSV
const GLOBAL_CSV_PATH = '../generate-csv/sales_data.csv';

@Injectable()
@Injectable()
export class CsvService {
  async parseCsv(): Promise<{
    nestExecutionTime: number;
    totalSales: number;
    topProductSales: number;
  }> {
    return new Promise((resolve, reject) => {
      const startTime = process.hrtime();

      let totalSales = 0;
      const productSales: { [key: string]: number } = {};

      fs.createReadStream(GLOBAL_CSV_PATH)
        .pipe(fastcsv.parse({ headers: true, delimiter: ',' }))
        .on('data', (row) => {
          const productID = row.product_id;
          const quantity = parseInt(row.quantity, 10);
          const price = parseFloat(row.price);
          const total = quantity * price;
          totalSales += total;
          if (!productSales[productID]) {
            productSales[productID] = 0;
          }
          productSales[productID] += total;
        })
        .on('end', () => {
          const topProduct = Object.keys(productSales).reduce((a, b) =>
            productSales[a] > productSales[b] ? a : b,
          );
          const topProductSales = productSales[topProduct] || 0;
          const endTime = process.hrtime(startTime);
          const nestExecutionTime = endTime[0] + endTime[1] / 1e9;

          console.log(`NestJS Execution time: ${nestExecutionTime} seconds`);
          console.log(`Total Sales: $${totalSales}`);
          console.log(
            `Top Product: ${topProduct} with sales $${topProductSales}`,
          );

          resolve({
            nestExecutionTime,
            totalSales,
            topProductSales,
          });
        })
        .on('error', (error) => reject(error));
    });
  }
}

csv.controller.ts

import { Controller, Get } from '@nestjs/common';
import { CsvService } from './csv.service';

@Controller('csv')
export class CsvController {
  constructor(private readonly csvService: CsvService) {}

  @Get('parse')
  async parseCsv(): Promise<{
    nestExecutionTime: number;
    totalSales: number;
    topProductSales: number;
  }> {
    return this.csvService.parseCsv();
  }
}

PHP腳本

sales.php

<?php
$start_time = microtime(true);

$file = fopen("../generate-csv/sales_data.csv", "r");
$total_sales = 0;
$product_sales = [];

fgetcsv($file); // Skip header
while (($line = fgetcsv($file)) !== false) {
    $product_id = $line[1];
    $quantity = (int)$line[2];
    $price = (float)$line[3];
    $total = $quantity * $price;

    $total_sales += $total;
    if (!isset($product_sales[$product_id])) {
        $product_sales[$product_id] = 0;
    }
    $product_sales[$product_id] += $total;
}
fclose($file);

arsort($product_sales);
$top_product = array_key_first($product_sales);

$end_time = microtime(true);
$execution_time = ($end_time - $start_time);

echo "PHP Execution time: ".$execution_time." seconds\n";
echo "Total Sales: $".$total_sales."\n";
echo "Top Product: ".$top_product." with sales $".$product_sales[$top_product]."\n";

Python腳本

import csv
import time

# Input file name config
input_file = '../generate-csv/sales_data.csv'


def parse_csv(file_path):
    start_time = time.time()

    total_sales = 0
    product_sales = {}

    with open(file_path, mode='r') as file:
        reader = csv.DictReader(file)

        for row in reader:
            product_id = row['product_id']
            quantity = int(row['quantity'])
            price = float(row['price'])
            total = quantity * price
            total_sales += total

            if product_id not in product_sales:
                product_sales[product_id] = 0
            product_sales[product_id] += total

    top_product = max(product_sales, key=product_sales.get)
    execution_time = time.time() - start_time

    return {
        'total_sales': total_sales,
        'top_product': top_product,
        'top_product_sales': product_sales[top_product],
        'execution_time': execution_time,
    }


if __name__ == "__main__":
    result = parse_csv(input_file)
    print(f"Python Execution time: {result['execution_time']:.2f} seconds")
    print(f"Total Sales: ${result['total_sales']:.2f}")
    print(f"Top Product: {result['top_product']} with sales ${
          result['top_product_sales']:.2f}")

結果

以下是我們的基準測試結果:

戈蘭

  • 執行時間:466.69975ms
  • 總銷售額:$274654985.36
  • 頂級產品:產品 1126,銷售額 305922.81 美元

Benchmarking CSV File Processing: Golang vs NestJS vs PHP vs Python

NestJS

  • 執行時間:6.730134208秒
  • 總銷售額:$274654985.36000216
  • 頂級產品:1126,銷售額 $305922.8099999997

Benchmarking CSV File Processing: Golang vs NestJS vs PHP vs Python

PHP

  • 執行時間:1.5142710208893秒
  • 總銷售額:$274654985.36
  • 頂級產品:1126,銷售額 305922.81 美元

Benchmarking CSV File Processing: Golang vs NestJS vs PHP vs Python

Python

  • 執行時間:2.56秒
  • 總銷售額:$274654985.36
  • 頂級產品:1126,銷售額 305922.81 美元

Benchmarking CSV File Processing: Golang vs NestJS vs PHP vs Python

分析

我的基準測試揭示了一些有趣的見解:

執行時間:Golang 在執行時間方面表現最好,PHP8 緊隨其後,而 NestJS 完成任務的時間最長。
記憶體使用:Build NestJS 表現出高效的記憶體使用,而 Python 表現出更高的記憶體消耗。
易於實現:Golang 提供了最簡單的實現,而 NestJS 需要更多的程式碼行和複雜性。

結論

根據我的發現,Golang 提供了最佳的效能速度和記憶體效率,使其成為處理大型資料集的絕佳選擇。

完整程式碼

您可以在我的 Github 儲存庫上取得完整程式碼
csv-解析-戰鬥。

以上是CSV 檔案處理基準測試:Golang、NestJS、PHP、Python的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn