首頁 >後端開發 >C++ >追求性能第三部分:C Force

追求性能第三部分:C Force

王林
王林原創
2024-08-06 01:10:021250瀏覽

The Quest for Performance Part III : C Force

在本系列的前兩期中,我們考慮了 Perl 中浮動操作的性能,
Python 和 R 在一個玩具範例中計算函數 cos(sin(sqrt(x))),其中 x 是一個 非常大 50M 雙精確度浮點數數組。
將算術密集型部分委託給 C 的混合實作是效能最高的實作之一。在本期中,我們將稍微偏離主題,看看玩具範例的純 C 程式碼實現的效能。
C 程式碼將提供有關記憶體局部性對於效能重要性的進一步見解(預設情況下,C 陣列中的元素儲存在記憶體中的順序位址中,以及數字API,例如PDL 或numpy 與此類容器的介面)相對於容器,
例如Perl 數組不將其值儲存在記憶體中的連續位址中。最後但同樣重要的是,C 程式碼實作將允許我們評估與低階編譯器(在本例中為 gcc)的浮點運算相關的標誌是否會影響效能。
這一點值得強調:普通人在「管道」安裝或建置內聯檔時完全依賴編譯器標誌的選擇。如果一個人不觸及這些標誌,那麼人們就會幸福地不知道他們可能會錯過什麼,或者他們可能會避免的陷阱。
簡單的 C 檔案 makefile 允許人們明確地進行此類效能評估。

下面完整列出了我們玩具範例的 C 程式碼。程式碼是不言自明的,因此除了指出它包含

的四個函數之外,不會花時間解釋
  • 昂貴函數的非順序計算:所有三個浮點操作都使用一個執行緒在單一循環內進行
  • 昂貴函數的順序計算:3 個浮點函數計算中的每一個都使用一個執行緒在單獨的循環中進行
  • 非順序 OpenMP 程式碼:非順序程式碼的執行緒版本
  • 順序 OpenMP 程式碼:順序程式碼的執行緒化

在這種情況下,人們可能希望編譯器足夠聰明,能夠識別平方根映射到彙編中的打包(向量化)浮點操作,以便可以使用適當的SIMD 指令對一個函數進行向量化(請注意,我們做了一個不使用OpenMP 程式碼的simd 程式)。
也許向量化帶來的加速可以抵消重複存取(或不存取)相同記憶體位置所造成的效能損失。

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <omp.h>

// simulates a large array of random numbers
double*  simulate_array(int num_of_elements,int seed);
// OMP environment functions
void _set_openmp_schedule_from_env();
void _set_num_threads_from_env();



// functions to modify C arrays 
void map_c_array(double* array, int len);
void map_c_array_sequential(double* array, int len);
void map_C_array_using_OMP(double* array, int len);
void map_C_array_sequential_using_OMP(double* array, int len);

int main(int argc, char *argv[]) {
    if (argc != 2) {
        printf("Usage: %s <array_size>\n", argv[0]);
        return 1;
    }

    int array_size = atoi(argv[1]);
    // printf the array size
    printf("Array size: %d\n", array_size);
    double *array = simulate_array(array_size, 1234);

    // Set OMP environment
    _set_openmp_schedule_from_env();
    _set_num_threads_from_env();

    // Perform calculations and collect timing data
    double start_time, end_time, elapsed_time;
    // Non-Sequential calculation
    start_time = omp_get_wtime();
    map_c_array(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Non-sequential calculation time: %f seconds\n", elapsed_time);
    free(array);

    // Sequential calculation
    array = simulate_array(array_size, 1234);
    start_time = omp_get_wtime();
    map_c_array_sequential(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Sequential calculation time: %f seconds\n", elapsed_time);
    free(array);

    array = simulate_array(array_size, 1234);
    // Parallel calculation using OMP
    start_time = omp_get_wtime();
    map_C_array_using_OMP(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Parallel calculation using OMP time: %f seconds\n", elapsed_time);
    free(array);

    // Sequential calculation using OMP
    array = simulate_array(array_size, 1234);
    start_time = omp_get_wtime();
    map_C_array_sequential_using_OMP(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Sequential calculation using OMP time: %f seconds\n", elapsed_time);

    free(array);
    return 0;
}



/*
*******************************************************************************
* OMP environment functions
*******************************************************************************
*/
void _set_openmp_schedule_from_env() {
  char *schedule_env = getenv("OMP_SCHEDULE");
  printf("Schedule from env %s\n", getenv("OMP_SCHEDULE"));
  if (schedule_env != NULL) {
    char *kind_str = strtok(schedule_env, ",");
    char *chunk_size_str = strtok(NULL, ",");

    omp_sched_t kind;
    if (strcmp(kind_str, "static") == 0) {
      kind = omp_sched_static;
    } else if (strcmp(kind_str, "dynamic") == 0) {
      kind = omp_sched_dynamic;
    } else if (strcmp(kind_str, "guided") == 0) {
      kind = omp_sched_guided;
    } else {
      kind = omp_sched_auto;
    }
    int chunk_size = atoi(chunk_size_str);
    omp_set_schedule(kind, chunk_size);
  }
}

void _set_num_threads_from_env() {
  char *num = getenv("OMP_NUM_THREADS");
  printf("Number of threads = %s from within C\n", num);
  omp_set_num_threads(atoi(num));
}
/*
*******************************************************************************
* Functions that modify C arrays whose address is passed from Perl in C
*******************************************************************************
*/

double*  simulate_array(int num_of_elements, int seed) {
  srand(seed); // Seed the random number generator
  double *array = (double *)malloc(num_of_elements * sizeof(double));
  for (int i = 0; i < num_of_elements; i++) {
    array[i] =
        (double)rand() / RAND_MAX; // Generate a random double between 0 and 1
  }
  return array;
}

void map_c_array(double *array, int len) {
  for (int i = 0; i < len; i++) {
    array[i] = cos(sin(sqrt(array[i])));
  }
}

void map_c_array_sequential(double* array, int len) {
  for (int i = 0; i < len; i++) {
    array[i] = sqrt(array[i]);
  }
  for (int i = 0; i < len; i++) {
    array[i] = sin(array[i]);
  }
  for (int i = 0; i < len; i++) {
    array[i] = cos(array[i]);
  }
}

void map_C_array_using_OMP(double* array, int len) {
#pragma omp parallel
  {
#pragma omp for schedule(runtime) nowait
    for (int i = 0; i < len; i++) {
      array[i] = cos(sin(sqrt(array[i])));
    }
  }
}

void map_C_array_sequential_using_OMP(double* array, int len) {
#pragma omp parallel
  {
#pragma omp for schedule(runtime) nowait
    for (int i = 0; i < len; i++) {
      array[i] = sqrt(array[i]);
    }
#pragma omp for schedule(runtime) nowait
    for (int i = 0; i < len; i++) {
      array[i] = sin(array[i]);
    }
#pragma omp for schedule(runtime) nowait
    for (int i = 0; i < len; i++) {
      array[i] = cos(array[i]);
    }
  }
}

一個關鍵問題是使用快速浮動編譯器標誌(一種以速度換取程式碼準確性的技巧)是否會影響效能。
這是沒有這個編譯器標誌的 makefile

CC = gcc
CFLAGS = -O3 -ftree-vectorize  -march=native  -Wall -std=gnu11 -fopenmp -fstrict-aliasing 
LDFLAGS = -fPIE -fopenmp
LIBS =  -lm

SOURCES = inplace_array_mod_with_OpenMP.c
OBJECTS = $(SOURCES:.c=_noffmath_gcc.o)
EXECUTABLE = inplace_array_mod_with_OpenMP_noffmath_gcc

all: $(SOURCES) $(EXECUTABLE)

clean:
    rm -f $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

%_noffmath_gcc.o : %.c 
    $(CC) $(CFLAGS) -c $< -o $@

這是帶有此標誌的:

CC = gcc
CFLAGS = -O3 -ftree-vectorize  -march=native -Wall -std=gnu11 -fopenmp -fstrict-aliasing -ffast-math
LDFLAGS = -fPIE -fopenmp
LIBS =  -lm

SOURCES = inplace_array_mod_with_OpenMP.c
OBJECTS = $(SOURCES:.c=_gcc.o)
EXECUTABLE = inplace_array_mod_with_OpenMP_gcc

all: $(SOURCES) $(EXECUTABLE)

clean:
    rm -f $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

%_gcc.o : %.c 
    $(CC) $(CFLAGS) -c $< -o $@

這是執行這兩個程式的結果

  • 沒有-ffast-math
OMP_SCHEDULE=guided,1 OMP_NUM_THREADS=8 ./inplace_array_mod_with_OpenMP_noffmath_gcc 50000000
Array size: 50000000
Schedule from env guided,1
Number of threads = 8 from within C
Non-sequential calculation time: 1.12 seconds
Sequential calculation time: 0.95 seconds
Parallel calculation using OMP time: 0.17 seconds
Sequential calculation using OMP time: 0.15 seconds
  • 使用 -ffast-math
OMP_SCHEDULE=guided,1 OMP_NUM_THREADS=8 ./inplace_array_mod_with_OpenMP_gcc 50000000
Array size: 50000000
Schedule from env guided,1
Number of threads = 8 from within C
Non-sequential calculation time: 0.27 seconds
Sequential calculation time: 0.28 seconds
Parallel calculation using OMP time: 0.05 seconds
Sequential calculation using OMP time: 0.06 seconds

請注意,可以在 Numba 程式碼中使用 fastmath,如下所示(預設為 fastmath=False):

@njit(nogil=True,fastmath=True)
def compute_inplace_with_numba(array):
    np.sqrt(array,array)
    np.sin(array,array)
    np.cos(array,array)

值得注意的幾點:

  • -ffast-math 顯著提高了效能(單執行緒和多執行緒程式碼大約提高了 300%),但它可能會產生錯誤的結果
  • Fastmath 也適用於 Numba,但應避免使用,其原因與在任何追求準確性的應用程式中應避免的原因相同
  • 順序 C 單執行緒程式碼的效能類似單執行緒 PDL 和 Numpy
  • 有點令人驚訝的是,當使用正確(非快速)數學時,順序代碼比非順序代碼快大約 20%。
  • 毫不奇怪,多執行緒程式碼比單執行緒程式碼更快:)
  • 我仍然無法解釋 numbas 如何為這個相當簡單的函數提供比 C 程式碼高 50% 的效能。

標題:「效能追求第三部分:C Force」

日期:2024-07-07

在本系列的前两期中,我们考虑了 Perl 中浮动操作的性能,
Python 和 R 在一个玩具示例中计算函数 cos(sin(sqrt(x))),其中 x 是一个 非常大 50M 双精度浮点数数组。
将算术密集型部分委托给 C 的混合实现是性能最高的实现之一。在本期中,我们将稍微偏离主题,看看玩具示例的纯 C 代码实现的性能。
C 代码将提供有关内存局部性对于性能重要性的进一步见解(默认情况下,C 数组中的元素存储在内存中的顺序地址中,以及数字 API,例如 PDL 或 numpy 与此类容器的接口)相对于容器,
例如Perl 数组不将其值存储在内存中的连续地址中。最后但同样重要的是,C 代码实现将允许我们评估与低级编译器(在本例中为 gcc)的浮点运算相关的标志是否会影响性能。
这一点值得强调:普通人在“管道”安装或构建内联文件时完全依赖于编译器标志的选择。如果一个人不触及这些标志,那么人们就会幸福地不知道他们可能会错过什么,或者他们可能会避免的陷阱。
简陋的 C 文件 makefile 允许人们明确地进行此类性能评估。

下面完整列出了我们玩具示例的 C 代码。该代码相当不言自明,因此除了指出它包含

的四个函数之外,不会花时间解释
  • 昂贵函数的非顺序计算:所有三个浮点操作都使用一个线程在单个循环内进行
  • 昂贵函数的顺序计算:3 个浮点函数计算中的每一个都使用一个线程在单独的循环中进行
  • 非顺序 OpenMP 代码:非顺序代码的线程版本
  • 顺序 OpenMP 代码:顺序代码的线程化

在这种情况下,人们可能希望编译器足够聪明,能够识别平方根映射到汇编中的打包(矢量化)浮点操作,以便可以使用适当的 SIMD 指令对一个函数进行矢量化(请注意,我们做了不使用 OpenMP 代码的 simd 程序)。
也许矢量化带来的加速可以抵消重复访问(或不访问)相同内存位置所造成的性能损失。

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <omp.h>

// simulates a large array of random numbers
double*  simulate_array(int num_of_elements,int seed);
// OMP environment functions
void _set_openmp_schedule_from_env();
void _set_num_threads_from_env();



// functions to modify C arrays 
void map_c_array(double* array, int len);
void map_c_array_sequential(double* array, int len);
void map_C_array_using_OMP(double* array, int len);
void map_C_array_sequential_using_OMP(double* array, int len);

int main(int argc, char *argv[]) {
    if (argc != 2) {
        printf("Usage: %s <array_size>\n", argv[0]);
        return 1;
    }

    int array_size = atoi(argv[1]);
    // printf the array size
    printf("Array size: %d\n", array_size);
    double *array = simulate_array(array_size, 1234);

    // Set OMP environment
    _set_openmp_schedule_from_env();
    _set_num_threads_from_env();

    // Perform calculations and collect timing data
    double start_time, end_time, elapsed_time;
    // Non-Sequential calculation
    start_time = omp_get_wtime();
    map_c_array(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Non-sequential calculation time: %f seconds\n", elapsed_time);
    free(array);

    // Sequential calculation
    array = simulate_array(array_size, 1234);
    start_time = omp_get_wtime();
    map_c_array_sequential(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Sequential calculation time: %f seconds\n", elapsed_time);
    free(array);

    array = simulate_array(array_size, 1234);
    // Parallel calculation using OMP
    start_time = omp_get_wtime();
    map_C_array_using_OMP(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Parallel calculation using OMP time: %f seconds\n", elapsed_time);
    free(array);

    // Sequential calculation using OMP
    array = simulate_array(array_size, 1234);
    start_time = omp_get_wtime();
    map_C_array_sequential_using_OMP(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Sequential calculation using OMP time: %f seconds\n", elapsed_time);

    free(array);
    return 0;
}



/*
*******************************************************************************
* OMP environment functions
*******************************************************************************
*/
void _set_openmp_schedule_from_env() {
  char *schedule_env = getenv("OMP_SCHEDULE");
  printf("Schedule from env %s\n", getenv("OMP_SCHEDULE"));
  if (schedule_env != NULL) {
    char *kind_str = strtok(schedule_env, ",");
    char *chunk_size_str = strtok(NULL, ",");

    omp_sched_t kind;
    if (strcmp(kind_str, "static") == 0) {
      kind = omp_sched_static;
    } else if (strcmp(kind_str, "dynamic") == 0) {
      kind = omp_sched_dynamic;
    } else if (strcmp(kind_str, "guided") == 0) {
      kind = omp_sched_guided;
    } else {
      kind = omp_sched_auto;
    }
    int chunk_size = atoi(chunk_size_str);
    omp_set_schedule(kind, chunk_size);
  }
}

void _set_num_threads_from_env() {
  char *num = getenv("OMP_NUM_THREADS");
  printf("Number of threads = %s from within C\n", num);
  omp_set_num_threads(atoi(num));
}
/*
*******************************************************************************
* Functions that modify C arrays whose address is passed from Perl in C
*******************************************************************************
*/

double*  simulate_array(int num_of_elements, int seed) {
  srand(seed); // Seed the random number generator
  double *array = (double *)malloc(num_of_elements * sizeof(double));
  for (int i = 0; i < num_of_elements; i++) {
    array[i] =
        (double)rand() / RAND_MAX; // Generate a random double between 0 and 1
  }
  return array;
}

void map_c_array(double *array, int len) {
  for (int i = 0; i < len; i++) {
    array[i] = cos(sin(sqrt(array[i])));
  }
}

void map_c_array_sequential(double* array, int len) {
  for (int i = 0; i < len; i++) {
    array[i] = sqrt(array[i]);
  }
  for (int i = 0; i < len; i++) {
    array[i] = sin(array[i]);
  }
  for (int i = 0; i < len; i++) {
    array[i] = cos(array[i]);
  }
}

void map_C_array_using_OMP(double* array, int len) {
#pragma omp parallel
  {
#pragma omp for schedule(runtime) nowait
    for (int i = 0; i < len; i++) {
      array[i] = cos(sin(sqrt(array[i])));
    }
  }
}

void map_C_array_sequential_using_OMP(double* array, int len) {
#pragma omp parallel
  {
#pragma omp for schedule(runtime) nowait
    for (int i = 0; i < len; i++) {
      array[i] = sqrt(array[i]);
    }
#pragma omp for schedule(runtime) nowait
    for (int i = 0; i < len; i++) {
      array[i] = sin(array[i]);
    }
#pragma omp for schedule(runtime) nowait
    for (int i = 0; i < len; i++) {
      array[i] = cos(array[i]);
    }
  }
}

一个关键问题是使用快速浮动编译器标志(一种以速度换取代码准确性的技巧)是否会影响性能。
这是没有这个编译器标志的 makefile

CC = gcc
CFLAGS = -O3 -ftree-vectorize  -march=native  -Wall -std=gnu11 -fopenmp -fstrict-aliasing 
LDFLAGS = -fPIE -fopenmp
LIBS =  -lm

SOURCES = inplace_array_mod_with_OpenMP.c
OBJECTS = $(SOURCES:.c=_noffmath_gcc.o)
EXECUTABLE = inplace_array_mod_with_OpenMP_noffmath_gcc

all: $(SOURCES) $(EXECUTABLE)

clean:
    rm -f $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

%_noffmath_gcc.o : %.c 
    $(CC) $(CFLAGS) -c $< -o $@

这是带有此标志的:

CC = gcc
CFLAGS = -O3 -ftree-vectorize  -march=native -Wall -std=gnu11 -fopenmp -fstrict-aliasing -ffast-math
LDFLAGS = -fPIE -fopenmp
LIBS =  -lm

SOURCES = inplace_array_mod_with_OpenMP.c
OBJECTS = $(SOURCES:.c=_gcc.o)
EXECUTABLE = inplace_array_mod_with_OpenMP_gcc

all: $(SOURCES) $(EXECUTABLE)

clean:
    rm -f $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

%_gcc.o : %.c 
    $(CC) $(CFLAGS) -c $< -o $@

这是运行这两个程序的结果

  • 没有-ffast-math
OMP_SCHEDULE=guided,1 OMP_NUM_THREADS=8 ./inplace_array_mod_with_OpenMP_noffmath_gcc 50000000
Array size: 50000000
Schedule from env guided,1
Number of threads = 8 from within C
Non-sequential calculation time: 1.12 seconds
Sequential calculation time: 0.95 seconds
Parallel calculation using OMP time: 0.17 seconds
Sequential calculation using OMP time: 0.15 seconds
  • 使用 -ffast-math
OMP_SCHEDULE=guided,1 OMP_NUM_THREADS=8 ./inplace_array_mod_with_OpenMP_gcc 50000000
Array size: 50000000
Schedule from env guided,1
Number of threads = 8 from within C
Non-sequential calculation time: 0.27 seconds
Sequential calculation time: 0.28 seconds
Parallel calculation using OMP time: 0.05 seconds
Sequential calculation using OMP time: 0.06 seconds

请注意,可以在 Numba 代码中使用 fastmath,如下所示(默认为 fastmath=False):

@njit(nogil=True,fastmath=True)
def compute_inplace_with_numba(array):
    np.sqrt(array,array)
    np.sin(array,array)
    np.cos(array,array)

值得注意的几点:

  • -ffast-math 显着提高了性能(单线程和多线程代码大约提高了 300%),但它可能会生成错误的结果
  • Fastmath 在 Numba 中也适用,但应避免使用,其原因与在任何追求准确性的应用程序中应避免的原因相同
  • 顺序 C 单线程代码的性能类似于单线程 PDL 和 Numpy
  • 有点令人惊讶的是,当使用正确(非快速)数学时,顺序代码比非顺序代码快大约 20%。
  • 毫不奇怪,多线程代码比单线程代码更快:)
  • 我仍然无法解释 numbas 如何为这个相当简单的函数提供比 C 代码高 50% 的性能。

以上是追求性能第三部分:C Force的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn