搜尋
首頁後端開發Python教學使用 YOLO 和 CLIP 來改進檢索

在本文中,我們將了解如何使用 YOLO 等物件偵測模型以及 CLIP 等多模態嵌入模型來更好地進行影像檢索。

這個想法是:CLIP 影像檢索的工作原理如下:我們使用 CLIP 模型嵌入我們擁有的影像並將它們儲存在某個地方,例如向量資料庫中。然後,在推理過程中,我們可以使用查詢圖像或提示,將其嵌入,並從可檢索的儲存嵌入中找到最接近的圖像。問題是當嵌入圖像有太多物件或某些物件在背景中時,我們仍然希望我們的系統檢索它們。這是因為 CLIP 將圖像作為一個整體嵌入。可以想像為詞嵌入模型與句子嵌入模型的關係。我們希望能夠搜尋與圖像中的物件等效的單字。因此,解決方案是使用物件偵測模型將影像分解為不同的物件。然後,嵌入這些分解的圖像,但將它們連結到其父圖像。這將使我們能夠檢索作物並獲得作物起源的親本。 讓我們看看它是如何工作的。

安裝相依性並導入它們

!pip install -q ultralytics torch matplotlib numpy pillow zipfile36 transformers

from ultralytics import YOLO
import matplotlib.pyplot as plt
from PIL import pillow
import os
from Zipfile import Zipfile, BadZipFile
import torch
from transformers import CLIPProcessor, CLIPModel, CLIPVisionModelWithProjection, CLIPTextModelWithProjection

下載COCO資料集並解壓縮

!wget http://images.cocodataset.org/zips/val2017.zip -O coco_val2017.zip

def extract_zip_file(extract_path):
    try:
        with ZipFile(extract_path+".zip") as zfile:
            zfile.extractall(extract_path)
        # remove zipfile
        zfileTOremove=f"{extract_path}"+".zip"
        if os.path.isfile(zfileTOremove):
            os.remove(zfileTOremove)
        else:
            print("Error: %s file not found" % zfileTOremove)
    except BadZipFile as e:
        print("Error:", e)

extract_val_path = "./coco_val2017"
extract_zip_file(extract_val_path)

然後我們可以拍攝一些圖像並建立範例清單。

source = ['coco_val2017/val2017/000000000139.jpg', '/content/coco_val2017/val2017/000000000632.jpg', '/content/coco_val2017/val2017/000000000776.jpg', '/content/coco_val2017/val2017/000000001503.jpg', '/content/coco_val2017/val2017/000000001353.jpg', '/content/coco_val2017/val2017/000000003661.jpg']

初始化YOLO模型和CLIP模型

在此範例中,我們將使用最新的 Ultralytics Yolo10x 模型以及 OpenAI Clip-vit-base-patch32 。

device = "cuda"

 # YOLO Model
model = YOLO('yolov10x.pt')

# Clip model
model_id = "openai/clip-vit-base-patch32"
image_model = CLIPVisionModelWithProjection.from_pretrained(model_id, device_map = device)
text_model = CLIPTextModelWithProjection.from_pretrained(model_id, device_map = device)
processor = CLIPProcessor.from_pretrained(model_id)

運行檢測模型

results = model(source=source, device = "cuda")

讓我們用此程式碼片段向我們展示結果

# Visualize the results
fig, ax = plt.subplots(2, 3, figsize=(15, 10))

for i, r in enumerate(results):
    # Plot results image
    im_bgr = r.plot()  # BGR-order numpy array
    im_rgb = Image.fromarray(im_bgr[..., ::-1])  # RGB-order PIL image

    ax[i%2, i//2].imshow(im_rgb)
    ax[i%2, i//2].set_title(f"Image {i+1}")

Using YOLO with CLIP to improve Retrieval

所以我們可以看到YOLO模型在偵測影像中的物體方面效果很好。它確實會犯一些錯誤,將顯示器標記為電視。但那很好。 YOLO 分配的實際類別並不是那麼重要,因為我們將使用 CLIP 進行推理。

定義一些輔助類

class CroppedImage:

  def __init__(self, parent, box, cls):

    self.parent = parent
    self.box = box
    self.cls = cls

  def display(self, ax = None):
    im_rgb = Image.open(self.parent)
    cropped_image = im_rgb.crop(self.box)

    if ax is not None:
      ax.imshow(cropped_image)
      ax.set_title(self.cls)
    else:
      plt.figure(figsize=(10, 10))
      plt.imshow(cropped_image)
      plt.title(self.cls)
      plt.show()

  def get_cropped_image(self):
    im_rgb = Image.open(self.parent)
    cropped_image = im_rgb.crop(self.box)
    return cropped_image

  def __str__(self):
    return f"CroppedImage(parent={self.parent}, boxes={self.box}, cls={self.cls})"

  def __repr__(self):
    return self.__str__()

class YOLOImage:
  def __init__(self, image_path, cropped_images):
    self.image_path = str(image_path)
    self.cropped_images = cropped_images

  def get_image(self):
    return Image.open(self.image_path)

  def get_caption(self):
    cls  =[]
    for cropped_image in self.cropped_images:
      cls.append(cropped_image.cls)

    unique_cls = set(cls)
    count_cls = {cls: cls.count(cls) for cls in unique_cls}

    count_string = " ".join(f"{count} {cls}," for cls, count in count_cls.items())
    return "this image contains " + count_string

  def __str__(self):
    return self.__repr__()

  def __repr__(self):
    cls  =[]
    for cropped_image in self.cropped_images:
      cls.append(cropped_image.cls)

    return f"YOLOImage(image={self.image_path}, cropped_images={cls})"

class ImageEmbedding:
  def __init__(self, image_path, embedding, cropped_image = None):
    self.image_path = image_path
    self.cropped_image = cropped_image
    self.embedding = embedding

裁切影像類

CroppedImage 類別表示從較大的父圖像中裁剪出的圖像的一部分。它使用父圖像的路徑、定義裁剪區域的邊界框和類別標籤(例如“貓”或“狗”)進行初始化。此類別包含顯示裁剪影像並將其作為影像物件檢索的方法。此顯示方法允許在提供的軸上或透過建立新圖形來視覺化裁剪部分,使其適用於不同的用例。此外,還實作了 __str__ 和 __repr__ 方法,以便輕鬆且資訊豐富地表示物件的字串。

YOLO圖像類

YOLOImage 類別旨在處理使用 YOLO 物件偵測模型處理的影像。它取得原始影像的路徑和代表影像中偵測到的物件的 CroppedImage 實例清單。該類別提供了打開和顯示完整圖像以及生成總結圖像中檢測到的物件的標題的方法。標題方法聚合並計算裁剪圖像中的唯一類別標籤,提供圖像內容的簡潔描述。此類對於管理和解釋對象檢測任務的結果特別有用。

影像嵌入類

ImageEmbedding 類別具有影像及其關聯的嵌入,它是影像特徵的數位表示。可以使用影像的路徑、嵌入向量以及可選的 CroppedImage 實例(如果嵌入對應於影像的特定裁剪部分)來初始化此類。 ImageEmbedding 類別對於涉及影像相似性、分類和檢索的任務至關重要,因為它提供了一種結構化方法來儲存和存取影像資料及其計算特徵。這種整合促進了高效的影像處理和機器學習工作流程。

裁剪每個圖像並建立 YOLOImage 物件列表

yolo_images: list[YOLOImage]= []

names= model.names

for i, r in enumerate(results):
  crops:list[CroppedImage] = []
  boxes = r.boxes
  classes = r.boxes.cls
  for j, box in enumerate(r.boxes):
    box = tuple(box.xyxy.flatten().cpu().numpy())
    cropped_image = CroppedImage(parent = r.path, box = box, cls = names[classes[j].int().item()])
    crops.append(cropped_image)
  yolo_images.append(YOLOImage(image_path=r.path, cropped_images=crops))

使用 CLIP 嵌入圖像

image_embeddings = []

for image in yolo_images:
  input = processor.image_processor(images= image.get_image(), return_tensors = 'pt')
  input.to(device)
  embeddings = image_model(pixel_values = input.pixel_values).image_embeds
  embeddings = embeddings/embeddings.norm(p=2, dim = -1, keepdim = True) # Normalize the embeddings
  image_embedding = ImageEmbedding(image_path = image.image_path, embedding = embeddings)
  image_embeddings.append(image_embedding)

  for cropped_image in image.cropped_images:
    input = processor.image_processor(images= cropped_image.get_cropped_image(), return_tensors = 'pt')
    input.to(device)
    embeddings = image_model(pixel_values = input.pixel_values).image_embeds
    embeddings = embeddings/embeddings.norm(p=2, dim = -1, keepdim = True) # Normalize the embeddings

    image_embedding = ImageEmbedding(image_path = image.image_path, embedding = embeddings, cropped_image = cropped_image)
    image_embeddings.append(image_embedding)

   **image_embeddings_tensor = torch.stack([image_embedding.embedding for image_embedding in image_embeddings]).squeeze()**

如果願意,我們現在可以將這些圖像嵌入儲存在向量資料庫中。但在這個例子中,我們將僅使用內點積技術來檢查相似性並檢索影像。

檢索

query = "image of a flowerpot"

text_embedding = processor.tokenizer(query, return_tensors="pt").to(device)
text_embedding = text_model(**text_embedding).text_embeds

similarities = (torch.matmul(text_embedding, image_embeddings_tensor.T)).flatten().detach().cpu().numpy()

# get the top 5 similar images
k = 5
top_k_indices = similarities.argsort()[-k:]

# Display the top 5 results
fig, ax = plt.subplots(2, 5, figsize=(20, 5))
for i, index in enumerate(top_k_indices):
  if image_embeddings[index].cropped_image is not None:
    image_embeddings[index].cropped_image.display(ax = ax[0][i])
  else:
  ax[0][i].imshow(Image.open(image_embeddings[index].image_path))
  ax[1][i].imshow(Image.open(image_embeddings[index].image_path))
  ax[0][i].axis('off')
  ax[1][i].axis('off')
  ax[1][i].set_title("Original Image")
plt.show()

Using YOLO with CLIP to improve Retrieval

Using YOLO with CLIP to improve Retrieval
Using YOLO with CLIP to improve Retrieval
Using YOLO with CLIP to improve Retrieval

您可以看到,我們甚至能夠檢索隱藏在背景中的小植物。有時它也會拉出原始圖像作為結果,因為我們也嵌入了它。

這是一項非常強大的技術。您還可以微調您自己的影像的檢測和嵌入模型,並進一步提高效能。

一個缺點是我們必須對所有偵測到的物件執行 CLIP 模型。緩解這種情況的一種方法是限制 YOLO 生產的盒子數量。

您可以透過此連結查看 Colab 上的程式碼。

Using YOLO with CLIP to improve Retrieval


想要連接嗎?

?我的網站

?我的推特

?我的 LinkedIn

以上是使用 YOLO 和 CLIP 來改進檢索的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

陣列的同質性質如何影響性能?陣列的同質性質如何影響性能?Apr 25, 2025 am 12:13 AM

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

編寫可執行python腳本的最佳實踐是什麼?編寫可執行python腳本的最佳實踐是什麼?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中