去年 12 月,新架構 Mamba 引爆了 AI 圈,向屹立不倒的 Transformer 發起了挑戰。如今,Google DeepMind“Hawk ”和“Griffin ”的推出為 AI 圈提供了新的選擇。
這次,Google DeepMind 在基礎模型方面又有了新動作。 我們知道,循環神經網路(RNN)在深度學習和自然語言處理研究的早期發揮了核心作用,並在許多應用中取得了實功,包括谷歌第一個端到端機器翻譯系統。不過近年來,深度學習和 NLP 都以 Transformer 架構為主,該架構融合了多層感知器(MLP)和多頭注意力(MHA)。 Transformer 已經在實踐中實現了比 RNN 更好的性能,並且在利用現代硬體方面也非常高效。基於 Transformer 的大語言模型在從網路收集的海量資料集上進行訓練,取得了顯著的成功。 縱然取得了很大的成功,但Transformer 架構仍有不足之處,例如由於全局注意力的二次複雜性,Transformer 很難有效地擴展到長序列。此外,鍵值(KV)快取隨序列長度線性成長,導致 Transformer 在推理過程中變慢。這時,循環語言模型成為一種替代方案,它們可以將整個序列壓縮為固定大小的隱藏狀態,並迭代更新。但若想取代 Transformer,新的 RNN 模型不僅必須在擴充上表現出相當的效能,而且必須實現類似的硬體效率。 在GoogleDeepMind 近日的一篇論文中,研究者提出了RG-LRU 層,它是一種新穎的門控線性循環層,並圍繞它設計了一個新的循環區塊來取代多查詢注意力(MQA)。 他們使用該循環塊構建了兩個新的模型,一個是混合了MLP 和循環塊的模型Hawk,另一個是混合了MLP 與循環塊、局部注意力的模型Griffin。
- 論文標題:Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models
- 連結:https://arxiv.org/pdf/2402.19427.pdf
研究者表示,Hawk 和Griffin 在held-out 損失和訓練FLOPs 之間表現出了冪律縮放,最高可以達到7B 參數,正如先前在Transformers 中觀察到的。其中 Griffin 在所有模型規模上實現了比強大 Transformer 基線略低的 held-out 損失。
研究者針對一系列模型規模、在300B tokens 上對Hawk 和Griffin 進行了過度訓練,結果顯示,Hawk-3B 在下游任務的表現上超越了Mamba-3B,儘管訓練的tokens 數量只有後者的一半。 Griffin-7B 和 Griffin-14B 的表現與 Llama-2 相當,儘管訓練的 tokens 數量只有後者的 1/7。
此外,Hawk 和 Griffin 在 TPU-v3 上達到了與 Transformers 相當的訓練效率。由於對角 RNN 層受記憶體限制,研究者使用了 RG-LRU 層的內核來實現這一點。
同時在推理過程中,Hawk 和 Griffin 都實現比 MQA Transformer 更高的吞吐量,並在採樣長序列時實現更低的延遲。當評估的序列比訓練中觀察到的更長時,Griffin 的表現比 Transformers 更好,並且可以有效地從訓練資料中學習複製和檢索任務。不過當在未經微調的情況下在複製和精確檢索任務上評估預訓練模型時,Hawk 和 Griffin 的表現不如 Transformers。
共同一作、DeepMind 研究科學家Aleksandar Botev 表示,混合了門控線性循環和局部注意力的模型Griffin 保留了RNN 的所有高效優勢和Transformer 的表達能力,最高可以擴展到14B 參數規模。
. 🎜>Griffin 所有模型都包含以下組成部分:(i) 一個殘差區塊,(ii) 一個MLP 區塊,(iii) 一個時間混合區塊。所有模型的 (i) 和 (ii) 都是相同的,但時間混合區塊有三個:全域多查詢注意(MQA)、局部(滑動視窗)MQA 和本文提出的循環區塊。作為循環塊的一部分,研究者使用了真實門控線性循環單元(RG-LRU)— 一種受線性循環單元啟發的新型循環層。 如圖 2(a)所示,殘差塊定義了 Griffin 模型的全域結構,其靈感來自 pre-normTransformer。在嵌入輸入序列後,研究者將其通過 ? 這樣的區塊(? 表示模型深度),然後應用 RMSNorm 產生最終活化。為了計算 token 機率,應用了最後的線性層,然後是 softmax。此層的權重與輸入嵌入層共享。
縮放研究如何調整模型的超參數及其在縮放時的行為提供了重要見解。 研究者定義了本研究中進行評估的模型,並提供了高達和超過 7B 參數的縮放曲線,並評估了模型在下游任務中的表現。 他們考慮了3 個模型系列:(1)MQA-Transformer 基線;(2)Hawk:純RNN 模型;(3)Griffin:混合模型,它將循環塊與局部注意力混合在一起。附錄 C 中定義了各種規模模型的關鍵模型超參數。 Hawk 架構使用了與Transformer 基線相同的殘差模式和MLP 區塊,但研究者使用了帶有RG-LRU 層的循環區塊作為時序混合區塊,而不是MQA。他們將循環區塊的寬度擴大了約 4/3 倍(即?_??? ≈4?/3),以便在兩者使用相同的模型維度 ? 時,與 MHA 區塊的參數數量大致匹配。 Griffin。與全域注意力相比,循環區塊的主要優勢在於它們使用固定的狀態大小來總結序列,而 MQA 的 KV 快取大小則與序列長度成正比增長。局部注意力具有相同的特性,而將循環塊與局部注意力混合則可以保留此優勢。研究者發現這種組合極為高效,因為局部注意力能準確模擬最近的過去,而循環層則能在長序列中傳遞訊息。 Griffin 使用了與 Transformer 基線相同的殘差模式和 MLP 區塊。但與 MQA Transformer 基線和 Hawk 模型不同的是,Griffin 混合使用了循環區塊和 MQA 區塊。具體來說,研究者採用了一種分層結構,將兩個殘差塊與一個循環塊交替使用,然後再使用一個局部(MQA)注意力塊。除非另有說明,局部注意力視窗大小固定為 1024 個 token。 主要縮放結果如圖 1(a)所示。三個模型系列都是在從 1 億到 70 億個參數的模型規模範圍內進行訓練的,不過 Griffin 擁有 140 億參數的版本。
Hawk 和 Griffin 的表現都非常出色。上表報告了 MMLU、HellaSwag、PIQA、ARC-E 和 ARC-C 的特徵歸一化準確率,同時報告了 WinoGrande 的絕對準確率和部分評分。隨著模型規模的增大,Hawk 的表現也得到了顯著提高,Hawk-3B 在下游任務中的表現要強於 Mamba-3B,儘管其訓練的 token 數量只有 Mamba-3B 的一半。 Griffin-3B 的表現明顯優於 Mamba-3B,Griffin-7B 和 Griffin-14B 的表現可與 Llama-2 相媲美,儘管它們是在少了近 7 倍的 token 上訓練出來的。 Hawk 能與 MQA Transformer 基線相媲美,而 Griffin 的表現則超過了這一基線。 在開發和擴展模型時,研究者遇到了兩大工程挑戰。首先,如何在多台設備上有效地分片處理模型。第二,如何有效地實現線性循環,以最大限度地提高 TPU 的訓練效率。本文討論了這兩個難題,然後對 Griffin 和 MQA 基準的訓練速度進行實證比較。 研究者比較了不同模型大小和序列長度的訓練速度,以研究本文模型在訓練過程中的計算優勢。對於每種模型大小,都保持每批 token 的總數固定不變,這意味著隨著序列長度的增加,序列數量也會按比例減少。 圖 3 繪製了 Griffin 模型與 MQA 基線模型在 2048 個序列長度下的相對運行時間。
LLM 的推理由兩個階段組成。 「預填充 」階段是接收並處理 prompt。這一步其實是對模型進行前向傳遞。由於prompt 可以在整個序列中並行處理,因此在這一階段,大多數模型操作都是計算受限的因此,研究者預計Transformers 模型和循環模型在預填充階段的相對速度與前文討論的那些模型在訓練期間的相對速度相似。 預填充之後是解碼階段,在這一階段,研究者從模型中自回歸地採 token。如下所示,尤其是對於序列長度較長時,注意力中使用的鍵值(KV)快取變得很大,循環模型在解碼階段具有更低的延遲和更高的吞吐量。 評估推論速度時有兩個主要指標需要考慮。第一個是延遲,它衡量在特定批次大小下產生指定數量 token 所需的時間。第二個是吞吐量,它衡量在單一裝置上採樣指定數量 token 時每秒可以產生的最大 token 數。因為吞吐量由採樣的 token 數乘以批次大小除以延遲得出,所以可以透過減少延遲或減少記憶體使用以在裝置上使用更大的批次大小來提高吞吐量。對於需要快速反應時間的即時應用來說,考慮延遲是有用的。吞吐量也值得考慮,因為它可以告訴我們在給定時間內可以從特定模型中採樣的最大 token 數量。當考慮其他語言應用,如基於人類回饋的強化學習(RLHF)或評分語言模型輸出(如AlphaCode 中所做的)時,這個屬性是有吸引力的,因為能夠在給定時間內輸出大量token 是一個吸引人的特性。 在此,研究者研究了參數為 1B 的模型推理結果。在基線方面,它們與 MQA Transformer 進行了比較,後者在推理過程中的速度明顯快於文獻中常用的標準 MHA 變換器。研究者比較的模型有:i) MQA 變換器,ii) Hawk 和 iii) Griffin。為了比較不同的模型,我們報告了延遲和吞吐量。 如圖 4 所示,研究者比較了批量大小為 16、空預填充和預填充 4096 個 token 的模型的延遲。
圖 1(b)中比較了相同模型在空提示後分別取樣 512、1024、2048 和 4196 個 token 時的最大吞吐量(token / 秒)。 本文也探討了Hawk 和Griffin 使用較長上下文來改進下一個token 預測的有效性,並研究它們在推理過程中的外推能力。另外也探討了 Griffin 在需要複製和檢索能力的任務中的表現,既包括在此類任務中訓練的模型,也包括在使用預訓練的語言模型測試這些能力時的表現。 從圖5 左側的曲線圖中,可以觀察到,在一定的最大長度範圍內,Hawk 和Griffin 都能在更長的上下文中提高下一個token 的預測能力,而且它們總體上能夠推斷出比訓練時更長的序列(至少4 倍)。尤其是 Griffin,即使在局部注意力層使用 RoPE 時,它的推理能力也非常出色。 如圖 6 所示,在選擇性複製任務中,所有 3 個模型都能完美地完成任務。在比較該任務的學習速度時, Hawk 明顯慢於 Transformer,這與 Jelassi et al. (2024) 的觀察結果類似,他們發現 Mamba 在類似任務上的學習速度明顯較慢。有趣的是,儘管 Griffin 只使用了一個局部注意力層,但它的學習速度幾乎沒有減慢,與 Transformer 的學習速度不相上下。 更多細節,請閱讀原文。
以上是RNN效率媲美Transformer,Google新架構兩連發:同等規模強於Mamba的詳細內容。更多資訊請關注PHP中文網其他相關文章!