bilibili視頻也顯示了這個:[Bilibili視頻][https://www.bilibili.com/video/BV16u4m1c7cU/?spm_id_from=333.999.0.0]我認為這是一個很好的視頻,但它的語言是中文。
時間複雜度是演算法運行所需時間的度量,作為其輸入大小的函數。它是一種描述演算法效率的方式,用於比較不同的演算法並確定哪種演算法最有效。
如何計算時間複雜度?
為了計算時間複雜度,我們需要考慮演算法執行的運算元作為輸入大小的函數。測量操作次數最常見的方法是計算特定操作執行的次數。
計算時間複雜度時有哪些常見陷阱?
這裡有個問題:
尋找清單中最多 10 個整數。
import random ls = [random.randint(1, 100) for _ in range(n)]
這是測試函數:
import time def benchmark(func, *args) -> float: start = time.perf_counter() func(*args) end = time.perf_counter() return end - start
這是使用 heapq 模組的解決方案:
def find_max_n(ls, n): import heapq return heapq.nlargest(n, ls)
或者我們用python的方式來寫:
def find_largest_n(nums, n): if n <= 0: return [] max_heap = [] for num in nums: if len(max_heap) < n: max_heap.append(num) # call sift_down for i in range((len(max_heap) - 2) // 2, -1, -1): _sift_down(max_heap, i) elif num > max_heap[0]: max_heap[0] = num _sift_down(max_heap, 0) return max_heap def _sift_down(heap, index): left = 2 * index + 1 right = 2 * index + 2 largest = index if left < len(heap) and heap[left] > heap[largest]: largest = left if right < len(heap) and heap[right] > heap[largest]: largest = right if largest != index: heap[index], heap[largest] = heap[largest], heap[index] _sift_down(heap, largest)
這是使用排序功能的解決方案:
def find_max_n(ls, n): return sorted(ls, reverse=True)[:n]
幾乎所有人都知道,堆的時間複雜度是 O(n log k),排序函數的時間複雜度是 O(n log n)。
看來第一個解決方案比第二個更好。但在 python 中卻並非如此。
看最終程式碼:
import time def benchmark(func, *args) -> float: start = time.perf_counter() func(*args) end = time.perf_counter() return end - start def find_max_n_heapq(ls, n): import heapq return heapq.nlargest(n, ls) def find_max_n_python_heap(nums, n): if n <= 0: return [] max_heap = [] for num in nums: if len(max_heap) < n: max_heap.append(num) # call sift_down for i in range((len(max_heap) - 2) // 2, -1, -1): _sift_down(max_heap, i) elif num > max_heap[0]: max_heap[0] = num _sift_down(max_heap, 0) return max_heap def _sift_down(heap, index): left = 2 * index + 1 right = 2 * index + 2 largest = index if left < len(heap) and heap[left] > heap[largest]: largest = left if right < len(heap) and heap[right] > heap[largest]: largest = right if largest != index: heap[index], heap[largest] = heap[largest], heap[index] _sift_down(heap, largest) def find_max_n_sorted(ls, n): return sorted(ls, reverse=True)[:n] # test import random for n in range(10, 10000, 100): ls = [random.randint(1, 100) for _ in range(n)] print(f"n = {n}") print(f"Use Heapq: {benchmark(find_max_n_heapq, ls, n)}") print(f"Python Heapq: {benchmark(find_max_n_python_heap, ls, n)}") print(f"Sorted : {benchmark(find_max_n_sorted, ls, n)}")
我在Python3.11 VScode中運行它,結果如下:
使用Heapq:0.002430099993944168
Python 堆:0.06343129999004304
排序:9.280000813305378e-05
n = 910
使用堆:9.220000356435776e-05
Python 堆:0.07715500006452203
排序:9.360001422464848e-05
n = 920
使用堆:9.440002031624317e-05
Python 堆:0.06573969998862594
排序:0.00012450001668184996
n = 930
使用Heapq:9.689992293715477e-05
Python 堆:0.06760239996947348
排序:9.66999214142561e-05
n = 940
使用堆:9.600003249943256e-05
Python 堆:0.07372559991199523
排序:9.680003859102726e-05
n = 950
使用堆:9.770004544407129e-05
Python 堆:0.07306570000946522
排序:0.00011979998089373112
n = 960
使用堆:9.980006143450737e-05
Python 堆:0.0771204000338912
排序:0.00022829999215900898
n = 970
使用Heapq:0.0001601999392732978
Python 堆:0.07493270002305508
排序:0.00010840001050382853
n = 980
使用堆:9.949994273483753e-05
Python 堆:0.07698320003692061
排序:0.00010300008580088615
n = 990
使用堆:9.979994501918554e-05
Python 堆:0.0848745999392122
排序:0.00012620002962648869
n = 10000
使用Heapq:0.003642000025138259
Python 堆:9.698883199947886
排序:0.00107999995816499
n = 11000
使用Heapq:0.0014836000045761466
Python 堆:10.537632800056599
排序:0.0012236000038683414
n = 12000
使用Heapq:0.001384599949233234
Python 堆:12.328411899972707
排序:0.0013226999435573816
n = 13000
使用Heapq:0.0020017001079395413
Python 堆:15.637207800056785
排序:0.0015075999544933438
n = 14000
使用Heapq:0.0017026999266818166
Python 堆:17.298848500009626
排序:0.0016967999981716275
n = 15000
使用Heapq:0.0017773000290617347
Python 堆:20.780625900020823
排序:0.0017105999868363142
當n很大時,Sorted會花費一點時間(有時甚至比使用heapq更好),但Python Heapq會花費很多時間。
內建函數比 heapq 更快,因為它是用 C 寫的,C 是一種編譯語言。
當我們處理大數據時,我們應該使用內建函數而不是 heapq.sort() 來提高程式碼的效能。在處理大數據時,我們必須警惕時間複雜度陷阱。有時時間複雜度的陷阱是不可避免的,但我們應該盡量避免它們。
大家好,我是夢沁園。我是一名學生。我喜歡學習新事物。
你可以看我的github:[MengQinYuan的Github][https://github.com/mengqinyuan]
以上是'警戒時間複雜度陷阱”的詳細內容。更多資訊請關注PHP中文網其他相關文章!