搜尋
首頁科技週邊人工智慧自動辨識最佳分子,降低合成成本,MIT開發分子設計決策演算法框架

編輯 | 紫羅

AI 在簡化藥物發現方面的應用正在爆炸式增長。從數十億種候選分子中篩選出可能具有開發新藥所需特性的分子。需要考慮的變數太多了,從材料價格到出錯的風險,即使科學家使用 AI,權衡合成最佳候選分子的成本也不是一件容易的事。

在此,MIT 研究人員開發了一個定量決策演算法框架 SPARROW,來自動識別最佳分子候選物,從而最大限度地降低合成成本,同時最大限度地提高候選物具有所需特性的可能性。該演算法還確定了合成這些分子所需的材料和實驗步驟。

SPARROW 考慮了一次合成一批分子的成本,因為多個候選分子通常可以從一些相同的化合物中衍生出來。此外,這種統一的方法可以從線上儲存庫和廣泛使用的 AI 工具中獲得有關分子設計、性質預測和合成規劃的關鍵資訊。

除了幫助製藥公司更有效地發現新藥外,SPARROW 還可以用於發明新的農業化學品或發現有機電子產品的專用材料等。

相關研究以《An algorithmic framework for synthetic cost-aware decision making in molecular design》為題,於 6 月 19 日發佈在《Nature Computational Science》上。

自動辨識最佳分子,降低合成成本,MIT開發分子設計決策演算法框架

論文連結:https://www.nature.com/articles/s43588-024-00639-y

「化合物的選擇是一門藝術,有時它是一門非常成功的藝術。但鑑於我們擁有所有這些模型和預測工具,它們能提供關於分子可能如何表現以及如何合成的信息,我們應該使用這些信息來指導我們做出的決策。 Coley 說。

定量決策演算法框架 SPARROW

「合成規劃和基於獎勵的路線最佳化工作流程」(Synthesis Planning And Rewards-based  Route Optimization Workflow,SPARROW),是一種用於驅動設計週期的演算法決策框架。

自動辨識最佳分子,降低合成成本,MIT開發分子設計決策演算法框架

圖示:SPARROW 概述及其在分子設計週期中的作用。 (資料來源:論文)

該研究建立在早期的問題公式的基礎上,用於同時選擇多個分子的合成路線,以及產品和製程系統設計的整合。與傳統的篩選方法不同,SPARROW 使用一個多目標最佳化標準,平衡成本與效用,從候選分子庫中對分子及其假設的合成路線進行優先排序。

SPARROW 產生由候選目標分子和合成路線組成的反應網絡。透過解決基於圖的最佳化問題,可以篩選出一組分子和合成路線,以最佳地平衡累積合成成本和效用。在此背景下,效用衡量評估分子屬性的價值。

效用的適當衡量標準將因應用和設計的不同階段而異。它可能包含分子屬性預測、這些預測中的不確定性或新資料點改善結構-屬性關係的潛力。必須向 SPARROW 提供一個候選庫,並提供相應的獎勵,以表明與每個候選分子相關的效用。

自動辨識最佳分子,降低合成成本,MIT開發分子設計決策演算法框架

圖示:SPARROW 的問題表述。 (資料來源:論文)

選擇一個分子所獲得的獎勵也取決於所選合成該分子的反應步驟是否成功。如果候選分子合成路線中的某個反應步驟失敗,則無法取得任何資訊。研究人員透過最大化選擇一個候選分子的預期獎勵來形式化這一點,該預期獎勵可以用其獎勵乘以成功合成該分子的機率來表示。

平衡成本和效用,SPARROW 的目標可以形式化為所有選定目標的預期獎勵除以使用選定路線合成所有選定目標的成本。

複雜的成本考量

從某種意義上說,科學家是否應該合成和測試某種分子,歸結為合成成本與實驗價值的問題。然而,確定成本或價值本身就是一個難題。

SPARROW 透過考慮合成分子所涉及的共享中間化合物並將這些資訊納入其成本與價值函數來應對這一挑戰。

「當你考慮設計一批分子的最佳化問題時,增加新結構的成本取決於你已經選擇的分子。」Coley 說。

該框架還考慮了諸如起始材料的成本、每條合成路線所涉及的反應數量,以及這些反應在第一次嘗試時成功的可能性等因素。

要使用 SPARROW,科學家需提供一組他們正在考慮測試的分子化合物,以及他們希望找到的屬性定義。

接下來,SPARROW 收集有關分子及其合成途徑的信息,然後權衡每個分子的價值與合成一批候選物的成本。它會自動選擇符合使用者標準的最佳候選子集,並為這些化合物找到最具成本效益的合成路線。

論文一作Jenna Fromer 說:「它在一步中完成了所有這些優化,因此它可以同時捕捉所有這些相互競爭的目標。」

多功能框架

SPARROW 的獨特之處在於它可以整合人類手工設計的分子結構、虛擬目錄中存在的分子結構,或生成式AI 模型創造的從未見過的分子結構。

「我們有各種不同的想法來源。SPARROW 的吸引力之一在於你可以將所有這些想法放在一個公平的競爭環境中。」Coley 補充道。

研究人員透過三個案例研究展示了 SPARROW 協調分子設計週期的能力。這些應用說明了 SPARROW 如何(1)成功平衡資訊增益與合成成本,(2)捕捉一批分子合成成本的非加和性,以及(3)擴展至包含數百個分子的候選庫。

自動辨識最佳分子,降低合成成本,MIT開發分子設計決策演算法框架

自動辨識最佳分子,降低合成成本,MIT開發分子設計決策演算法框架

圖示:SPARROW 在 14 個 ASCT2 抑制劑候選庫中平衡成本和獎勵的能力證明。 (資料來源:論文)

他們發現 SPARROW 有效地捕捉了批量合成的邊際成本,並確定了常見的實驗步驟和中間化學品。此外,它可以擴展以處理數百種潛在的分子候選物。

「在化學機器學習社群中,有許多模型可以很好地用於逆合成或分子性質預測,但我們實際上如何使用它們?我們的框架旨在發揮這些前期研究的價值。透過創建SPARROW,我們希望能夠指導其他研究人員使用自己的成本和效用函數來思考化合物的篩選。

未來,研究人員希望向 SPARROW 融入更多複雜性。例如,他們希望讓演算法能夠考慮到測試一種化合物的價值可能並不總是恆定的。他們還希望在其成本與價值函數中包含更多並行化學元素。

參考內容:https://news.mit.edu/2024/smarter-way-streamline-drug-discovery-0617

以上是自動辨識最佳分子,降低合成成本,MIT開發分子設計決策演算法框架的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
五个时间序列预测的深度学习模型对比总结五个时间序列预测的深度学习模型对比总结May 05, 2023 pm 05:16 PM

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶Oct 27, 2023 pm 03:13 PM

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子Jan 04, 2024 pm 05:38 PM

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊Apr 17, 2024 am 08:40 AM

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Aug 26, 2023 pm 09:01 PM

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊Mar 27, 2024 pm 02:16 PM

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

手机摄影技术让以假乱真的好莱坞级电影特效视频走红手机摄影技术让以假乱真的好莱坞级电影特效视频走红Sep 07, 2023 am 09:41 AM

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐Jan 16, 2024 am 11:24 AM

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前By尊渡假赌尊渡假赌尊渡假赌
倉庫:如何復興隊友
4 週前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒險:如何獲得巨型種子
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器