
幾十年來,核融合釋放能量的「精妙」過程一直吸引著科學家們的研究興趣。
現在,在普林斯頓等離子體物理實驗室(PPPL)中,科學家正藉助人工智慧,來解決人類面臨的緊迫挑戰:透過聚變等離子體產生清潔、可靠的能源。
與傳統的電腦程式碼不同,機器學習不僅僅是指令列表,它可以分析數據、推斷特徵之間的關係,並從新知識中學習和適應。
PPPL+研究人員相信,這種學習和適應能力可以透過多種方式改善他們對聚變反應的控制。這包括完善超熱等離子體周圍容器的設計、最佳化加熱方法以及在越來越長的時間內保持反應的穩定控制。
近日,PPPL的AI研究取得重大成果。 PPPL研究人員解釋了他們如何利用機器學習來避免磁擾動、聚變等離子體的穩定性。這項成果對於實現永續的聚變能源具有重要意義。透過對大量資料的分析和訓練,研究人員成功地開發出一種機器學習模型,能夠準確

該討論文的主要作者,PPPL研究物理學家SangKyeun Kim表示:「研究結果令人印象深刻,因為我們能夠夠使用相同的程式碼在兩個不同的託卡馬克裝置上實現這些結果。 ##Nature Communications
》上。論文連結:
https://www.nature.com/articles/s41467-024-48415-w離子體需要足夠的品質因子(G∝ατT)才能實現高聚變性,並且隨著離子約束質量 (H89:歸一化能量約束時間) 的增加而增加。
為了使託卡馬克設計成為聚變反應器的可行選擇,必須開發可靠的方法來定期抑制邊緣爆發(edge burst)事件而不影響 G。 科學家已經透過各種方法來減輕邊緣爆發事件。一種有效的方法是利用外部 3D 場線圈的共振磁擾動 (RMP),這已被證明是最有前途的邊緣爆發抑制方法之一。圖示:託卡馬克中的 3D 場線圈結構。 (資料來源:論文)
然而,這種情況的代價高昂,導致 H89 和 G 與標準高約束等離子體體系相比顯著惡化,從而削弱了經濟前景。此外,3D 場還增加了災難性核心不穩定的風險,稱為中斷,這甚至比邊緣爆裂更嚴重。因此,無邊緣爆發操作與高約束操作的安全可及性和相容性亟待探索。
這是透過即時利用無邊緣爆發起始和損耗之間的滯後來增強等離子體約束,同時擴展 ML 在捕獲物理和優化核聚變技術方面的能力來實現的。
圖示:DIII-D 和 KSTAR 託卡馬克中 ELM-free 放電的效能比較。 (來源:論文)
這種整合有助於:
高度增強等離子體約束,在兩台機器的無邊界局域模(Edge Localized Mode-free,ELM-free)場景中達到最高融合G,G 增加高達90%;
使用基於ML 的3D 場模擬器首次實現全自動3D 場最佳化;
從等離子體操作一開始就同時建立爆發抑制,實現接近ITER 相關水準的幾乎完全的無邊緣爆發操作。這項成就為國際熱核融合實驗反應器(ITER)等未來設備邁出了至關重要的一步,在這些設備中,依賴經驗 RMP 優化不再是可行或可接受的方法。
「等離子體中存在不穩定性,可能會導致聚變裝置嚴重損壞。我們不能在商業聚變容器中使用這些物質。我們的工作推動了該領域的發展,並表明人工智慧在管理聚變反應方面發揮重要作用,避免不穩定,同時允許等離子體產生盡可能多的聚變能。
基於 ML 的全自動 3D 場最佳化
在本實驗中,使用一系列放電來尋找安全 ELM 抑制的最佳化 3D 波形。
在此背景下,研究引入了 ML 技術來開發自動化 3D 線圈優化的新穎路徑,並首次展示了該概念。
研究人員開發了 GPEC 程式碼的代理模型 (ML-3D),以即時利用基於物理的模型。該模型使用 ML 演算法將計算時間加速到 ms 級,並整合到 KSTAR 中的自適應 RMP 優化器中。
ML-3D 由一個完全連接的多層感知器(MLP)組成,由九個輸入驅動。為了訓練此模型,利用 8490 KSTAR 平衡的 GPEC 模擬。
此演算法利用 ELM 狀態監視器(Dα)訊號即時調整 IRMP,可以保持足夠的邊緣 3D 場來存取和維持 ELM 抑制。同時,3D 場優化器使用 ML-3D 的輸出來調整 3D 線圈上的電流分佈,從而確保安全的 3D 場以避免中斷。
KSTAR 實驗中,ML 整合的自適應 RMP 最佳化器在 4.5 秒內觸發,在 6.2 秒內實現安全的 ELM 抑制。
研究也顯示 3D-ML 作為自動化無 ELM 存取的可行解決方案。 ML-3D 基於物理模型,不需要實驗數據,使其可以直接擴展到 ITER 和未來的聚變反應器。這種對未來設備的強大適用性凸顯了 ML 整合 3D 場優化方案的優勢。此外,在未來的 3D 線圈電流限制更高的設備中,有望實現更好的場最佳化和更高的聚變性能。
研究成功優化了KSTAR 和DIII-D 裝置中的受控ELM-free 狀態,並具有高度增強的聚變性能,涵蓋了與未來反應器相關的low-n RMP 到ITER 相關的nRMP = 3 RMP,並在兩台機器中實現了各種ELM-free 場景中的最高水平。
此外,ML 演算法與RMP 控制的創新整合首次實現了全自動3D 場最佳化和ELM-free 操作,並在自適應最佳化流程的支持下,效能得到了顯著增強。這種自適應方法展現了 RMP ELM 抑制和高限制之間的兼容性。
此外,它還提供了一種穩健的策略,透過最大限度地減少限制和無感電流分數的損失,在長脈衝場景(持續超過 45 秒)中實現穩定的 ELM 抑制。
值得注意的是,在 nRMP = 3 RMP 的 DIII-D 中觀察到顯著的性能 (G) 提升,顯示較初始標準 ELM 抑制狀態提高了 90% 以上。這種增強不僅歸因於自適應 RMP 控制,還歸因於等離子體旋轉的自洽演化。此反應能夠以非常低的 RMP 幅度進行 ELM 抑制,從而增強基座。此功能是系統透過對自適應調製的自組織響應過渡到最佳狀態的一個很好的例子。
此外,自適應方案與早期的 RMP-ramp 方法結合,實現了 ITER 相關的 ELM-free 場景,幾乎完全 ELM-free 操作。這些結果證實,整合自適應 RMP 控制是一種非常有前途的優化 ELM 抑制狀態的方法,有可能解決實現實用且經濟可行的聚變能源的最艱鉅的挑戰之一。
參考內容:https://phys.org/news/2024-05-ai-intensive-aspects-plasma-physics.html
【推薦閱讀】
######################################################以上是可控核融合新里程碑,AI首次實現雙託卡馬克3D場全自動優化,登Nature子刊的詳細內容。更多資訊請關注PHP中文網其他相關文章!

斯坦福大學以人為本人工智能研究所發布的《2025年人工智能指數報告》對正在進行的人工智能革命進行了很好的概述。讓我們用四個簡單的概念來解讀它:認知(了解正在發生的事情)、欣賞(看到好處)、接納(面對挑戰)和責任(弄清我們的責任)。 認知:人工智能無處不在,並且發展迅速 我們需要敏銳地意識到人工智能發展和傳播的速度有多快。人工智能係統正在不斷改進,在數學和復雜思維測試中取得了優異的成績,而就在一年前,它們還在這些測試中慘敗。想像一下,人工智能解決複雜的編碼問題或研究生水平的科學問題——自2023年

Meta的Llama 3.2:多模式和移動AI的飛躍 Meta最近公佈了Llama 3.2,這是AI的重大進步,具有強大的視覺功能和針對移動設備優化的輕量級文本模型。 以成功為基礎

本週的AI景觀:進步,道德考慮和監管辯論的旋風。 OpenAI,Google,Meta和Microsoft等主要參與者已經釋放了一系列更新,從開創性的新車型到LE的關鍵轉變

連接的舒適幻想:我們在與AI的關係中真的在蓬勃發展嗎? 這個問題挑戰了麻省理工學院媒體實驗室“用AI(AHA)”研討會的樂觀語氣。事件展示了加油

介紹 想像一下,您是科學家或工程師解決複雜問題 - 微分方程,優化挑戰或傅立葉分析。 Python的易用性和圖形功能很有吸引力,但是這些任務需要強大的工具

Meta's Llama 3.2:多式聯運AI強力 Meta的最新多模式模型Llama 3.2代表了AI的重大進步,具有增強的語言理解力,提高的準確性和出色的文本生成能力。 它的能力t

數據質量保證:與Dagster自動檢查和良好期望 保持高數據質量對於數據驅動的業務至關重要。 隨著數據量和源的增加,手動質量控制變得效率低下,容易出現錯誤。

大型機:AI革命的無名英雄 雖然服務器在通用應用程序上表現出色並處理多個客戶端,但大型機是專為關鍵任務任務而建立的。 這些功能強大的系統經常在Heavil中找到


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

記事本++7.3.1
好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。