Java 和 Scala 語言在機器學習中廣泛使用。本文介紹了以下Java 和Scala 框架:Java:Weka(提供機器學習演算法和工具)、H2O(分散式記憶體內機器學習平台)Scala:Spark MLlib(分散式運算庫的一部分,提供機器學習演算法)、MLpipe (端到端管道庫)這些框架可簡化機器學習模型建置、提高訓練效率、實現可擴展性和生產部署。選擇合適的框架取決於專案需求和應用程式的規模和複雜性。
Java 和Scala 框架在機器學習中的應用
簡介
##Java 和Scala 是機器學習中廣泛使用的程式語言,提供大量框架來簡化模型建置和部署流程。本文將介紹一些流行的 Java 和 Scala 框架,並提供實際案例來說明其用法。 Java 框架Weka
- #免費開源的框架,提供廣泛的機器學習演算法和工具。
- 實戰案例:使用Weka 建立一個簡單決策樹分類器
import weka.classifiers.trees.DecisionStump; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; public class WekaExample { public static void main(String[] args) throws Exception { // 1、加载数据 Instances data = DataSource.read("weather.arff"); // 2、构建决策树分类器 DecisionStump classifier = new DecisionStump(); classifier.buildClassifier(data); // 3、使用分类器进行预测 double[] prediction = classifier.distributionForInstance(data.instance(0)); System.out.println("第一行数据的预测结果:" + Arrays.toString(prediction)); } }
H2O
- 分散式記憶體內機器學習平台。
- 實戰案例:使用H2O 訓練一個廣義線性模型
import hex.genmodel.easy.EasyPredictModelWrapper; import hex.genmodel.easy.RowData; import hex.genmodel.easy.exception.PredictException; import hex.genmodel.easy.prediction.BinomialModelPrediction; public class H2OExample { public static void main(String[] args) throws PredictException { // 1、加载模型 EasyPredictModelWrapper model = new EasyPredictModelWrapper("model.zip"); // 2、准备预测数据 RowData row = new RowData(); row.put("Age", 25); row.put("Sex", "M"); // 3、使用模型进行预测 BinomialModelPrediction prediction = model.predict(row); System.out.println("概率:" + prediction.classProbabilities[0]); } }Scala 框架
Spark MLlib
- Apache Spark 分散式運算庫的一部分,提供機器學習演算法和實用工具。
- 實戰案例:使用Spark MLlib 訓練一個邏輯迴歸模型
import org.apache.spark.ml.classification.LogisticRegression // 1、加载数据 val data = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("data.csv") // 2、构建逻辑回归模型 val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3) // 3、拟合模型 val model = lr.fit(data) // 4、使用模型进行预测 val predictions = model.transform(data) predictions.show()
MLpipe
- 一個模組化機器學習庫,提供從資料載入到模型評估的端到端管道。
- 實戰案例:使用MLpipe 建立一個文字分類管道
import org.mlpiper.dataframes.DataFrame import org.mlpiper.features.transformers.nlp.TextToBow import org.mlpiper.machinelearning.classification.ClassificationModel import org.mlpiper.utilities.FileSystem // 1、加载数据 val df = DataFrame.fromCSV("data.csv") // 2、文本到词袋变换 val ttb = TextToBow().setInputCol("text").setOutputCol("features") df.transformWith(ttb) // 3、训练分类模型 val model = ClassificationModel.randomForest() // 4、训练和评估模型 model.fit(df).evaluate(df)
總結
Java 和Scala 在機器學習領域提供了豐富的框架,這些框架可以簡化模型構建,提高訓練效率,並實現可擴展性和生產部署。選擇合適的框架取決於特定的專案需求和應用程式的規模和複雜性。以上是Java框架與Scala框架在機器學習領域的應用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3漢化版
中文版,非常好用