本文实例讲述了Python的批量远程管理和部署工具Fabric用法。分享给大家供大家参考。具体如下:
Fabric是Python中一个非常强大的批量远程管理和部署工具,常用于在多个远程PC上批量执行SSH任务.
常见的使用方法大概总结如下:
1. 首先,要将批量执行的任务写入到一个fabfile.py中,
from fabric.api import run, local, roles, env, cd
env.hosts=[
'192.168.1.110',
'192.168.1.111',
'192.168.1.112'
]
env.user="username"
env.password="password"
env.port=22
#env.parallel=True
#env.skip_bad_hosts=True
#env.timeout=1
#env.warn_only=True
# local用于在本地PC执行命令.
# run用于在远程PC执行命令.
def ls():
with cd('/home/workspace/project'):
local('touch 1.log')
with cd('/home/workspace/project2'):
local('touch 2.log')
#@parallel, 可以设置是否并行执行
#@serial
def pull():
with cd('/home/workspace/project'):
run('git pull')
def clean():
with cd('/home/workspace/project'):
run('bash clean.sh')
@hosts('192.168.1.113')
def robot(device):
with cd('/home/workspace/project'):
run('bash run.sh %s robot && sleep 1' % device)
以上就是一个简单的fabfile.py, 其中定义的函数均对应一个fab中的可执行命令.
其中有两个小的注意事项:
A.在远程机器的run.sh中如果要执行一些非系统常见的工具,最好指定为绝对路径. 且可以适当地使用nohup的方式.
B.执行其他脚本或者命令后最好加上sleep,以防止Fabric过早地关闭与远程PC连接的session,而导致执行任务失败.
2. 执行过程: fabric执行会默认选取当前目录下的fabfile.py文件,
fab pull
fab robot:hosts="192.168.1.115",device=5560
可以通过hosts参数给fabric传入指定的远程PC, 该hosts参数的优先级比env.hosts的要高.
也可以给fab中的命令传递参数,如device.
此外,还可以通过fab -f otherFabFile.py clean来指定其他的fabric文件.
如果需要并行执行的话,也可以传递参数如fab -P -z 15 pull, 15表示并行执行的PC数量.
以上,只是一些简单的用法,如果需要更高级的用法,可以关注该项目的github主页 https://github.com/fabric/fabric.
希望本文所述对大家的Python程序设计有所帮助。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

WebStorm Mac版
好用的JavaScript開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版