搜尋
首頁後端開發Python教學Python中的特殊语法:filter、map、reduce、lambda介绍

filter(function, sequence):对sequence中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tuple(取决于sequence的类型)返回:

复制代码 代码如下:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]
>>> def f(x): return x != 'a'
>>> filter(f, "abcdef")
'bcdef'

map(function, sequence) :对sequence中的item依次执行function(item),见执行结果组成一个List返回:

复制代码 代码如下:

>>> def cube(x): return x*x*x
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>> def cube(x) : return x + x
...
>>> map(cube , "abcde")
['aa', 'bb', 'cc', 'dd', 'ee']

另外map也支持多个sequence,这就要求function也支持相应数量的参数输入:
复制代码 代码如下:

>>> def add(x, y): return x+y
>>> map(add, range(8), range(8))
[0, 2, 4, 6, 8, 10, 12, 14]

reduce(function, sequence, starting_value):对sequence中的item顺序迭代调用function,如果有starting_value,还可以作为初始值调用,例如可以用来对List求和:

复制代码 代码如下:

>>> def add(x,y): return x + y
>>> reduce(add, range(1, 11))
55 (注:1+2+3+4+5+6+7+8+9+10)
>>> reduce(add, range(1, 11), 20)
75 (注:1+2+3+4+5+6+7+8+9+10+20)

lambda:这是Python支持一种有趣的语法,它允许你快速定义单行的最小函数,类似与C语言中的宏,这些叫做lambda的函数,是从LISP借用来的,可以用在任何需要函数的地方:

复制代码 代码如下:

>>> g = lambda x: x * 2
>>> g(3)
6
>>> (lambda x: x * 2)(3)
6

我们也可以把filter map reduce 和lambda结合起来用,函数就可以简单的写成一行。
例如:

复制代码 代码如下:

kmpathes = filter(lambda kmpath: kmpath,                 
map(lambda kmpath: string.strip(kmpath),
string.split(l, ':')))    

看起来麻烦,其实就像用语言来描述问题一样,非常优雅。
对 l 中的所有元素以':'做分割,得出一个列表。对这个列表的每一个元素做字符串strip,形成一个列表。对这个列表的每一个元素做直接返回操作(这个地方可以加上过滤条件限制),最终获得一个字符串被':'分割的列表,列表中的每一个字符串都做了strip,并可以对特殊字符串过滤。

---------------------------------------------------------------

lambda表达式返回一个函数对象
例子:

复制代码 代码如下:

func = lambda x,y:x+y
func相当于下面这个函数
def func(x,y):
    return x+y

注意def是语句而lambda是表达式
下面这种情况下就只能用lambda而不能用def
复制代码 代码如下:

[(lambda x:x*x)(x) for x in range(1,11)]

map,reduce,filter中的function都可以用lambda表达式来生成!
 
map(function,sequence)
把sequence中的值当参数逐个传给function,返回一个包含函数执行结果的list。
如果function有两个参数,即map(function,sequence1,sequence2)。
 
例子:
求1*1,2*2,3*3,4*4

复制代码 代码如下:

map(lambda x:x*x,range(1,5))

返回值是[1,4,9,16]
 
reduce(function,sequence)

function接收的参数个数只能为2
先把sequence中第一个值和第二个值当参数传给function,再把function的返回值和第三个值当参数传给
function,然后只返回一个结果。
 
例子:
求1到10的累加

复制代码 代码如下:

reduce(lambda x,y:x+y,range(1,11))

返回值是55。
 
filter(function,sequence)

function的返回值只能是True或False
把sequence中的值逐个当参数传给function,如果function(x)的返回值是True,就把x加到filter的返回值里面。一般来说filter的返回值是list,特殊情况如sequence是string或tuple,则返回值按照sequence的类型。
 
例子:
找出1到10之间的奇数

复制代码 代码如下:

filter(lambda x:x%2!=0,range(1,11))

返回值
复制代码 代码如下:

[1,3,5,7,9]

 
如果sequence是一个string
复制代码 代码如下:

filter(lambda x:len(x)!=0,'hello')返回'hello'
filter(lambda x:len(x)==0,'hello')返回''

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python vs. C:內存管理和控制Python vs. C:內存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显著。1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科學計算的Python:詳細的外觀科學計算的Python:詳細的外觀Apr 19, 2025 am 12:15 AM

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python和C:找到合適的工具Python和C:找到合適的工具Apr 19, 2025 am 12:04 AM

選擇Python還是C 取決於項目需求:1)Python適合快速開發、數據科學和腳本編寫,因其簡潔語法和豐富庫;2)C 適用於需要高性能和底層控制的場景,如係統編程和遊戲開發,因其編譯型和手動內存管理。

數據科學和機器學習的Python數據科學和機器學習的PythonApr 19, 2025 am 12:02 AM

Python在數據科學和機器學習中的應用廣泛,主要依賴於其簡潔性和強大的庫生態系統。 1)Pandas用於數據處理和分析,2)Numpy提供高效的數值計算,3)Scikit-learn用於機器學習模型構建和優化,這些庫讓Python成為數據科學和機器學習的理想工具。

學習Python:2小時的每日學習是否足夠?學習Python:2小時的每日學習是否足夠?Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Web開發的Python:關鍵應用程序Web開發的Python:關鍵應用程序Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能