搜尋
首頁後端開發Python教學使用Python的Scrapy框架编写web爬虫的简单示例

 在这个教材中,我们假定你已经安装了Scrapy。假如你没有安装,你可以参考这个安装指南。

我们将会用开放目录项目(dmoz)作为我们例子去抓取。

这个教材将会带你走过下面这几个方面:

  •     创造一个新的Scrapy项目
  •     定义您将提取的Item
  •     编写一个蜘蛛去抓取网站并提取Items。
  •     编写一个Item Pipeline用来存储提出出来的Items

Scrapy由Python写成。假如你刚刚接触Python这门语言,你可能想要了解这门语言起,怎么最好的利用这门语言。假如你已经熟悉其它类似的语言,想要快速地学习Python,我们推荐这种深入方式学习Python。假如你是新手,想从开始使用Python学习,可以尝试去看看非程序员Python资源列表。

创造一个项目

在你要抓取之前,首先要建立一个新的Scrapy项目。然后进去你的存放代码目录,执行如下命令。

scrapy startproject tutorial

它将会创建如下的向导目录:

复制代码 代码如下:
tutorial/
    scrapy.cfg
    tutorial/
        __init__.py
        items.py
        pipelines.py
        settings.py
        spiders/
            __init__.py
            ...

这是一些基本信息:

  •     scrapy.cfg: 项目的配置文件。
  •     tutorial/: 项目的python模块, 在这里稍后你将会导入你的代码。
  •     tutorial/items.py: 项目items文件。
  •     tutorial/pipelines.py: 项目管道文件。
  •     tutorial/settings.py: 项目配置文件。
  •     tutorial/spiders/: 你将要放入你的spider到这个目录中。


定义我们的Item

Items是装载我们抓取数据的容器。它们工作像简单的Python字典,它提供更多的保护,比如对未定义的字段提供填充功能防止出错。

它们通过创建scrapy.item.Item类来声明并定义它们的属性作为scrapy.item.Field 对象,就像是一个对象关系映射(假如你不熟悉ORMs,你将会看见它是一个简单的任务).

我们将需要的item模块化,来控制从demoz.org网站获取的数据,比如我们将要去抓取网站的名字,url和描述信息。我们定义这三种属性的域。我们编辑items.py文件,它在向导目录中。我们Item类看起来像这样。

 

from scrapy.item import Item, Field
 
class DmozItem(Item):
 title = Field()
 link = Field()
 desc = Field()

这个看起来复杂的,但是定义这些item能让你用其他Scrapy组件的时候知道你的item到底是什么

我们第一个Spider

Spiders是用户写的类,它用来去抓取一个网站的信息(或者一组网站) 。
我们定义一个初始化的URLs列表去下载,如何跟踪链接,如何去解析这些页面的内容去提取 items.创建一个Spider,你必须是scrapy.spider.BaseSpider的子类, 并定义三个主要的,强制性的属性。

    名字: Spider的标识. 它必须是唯一的, 那就是说,你不能在不同的Spiders中设置相同的名字。

    开始链接:Spider将会去爬这些URLs的列表。所以刚开始的下载页面将要包含在这些列表中。其他子URL将会从这些起始URL中继承性生成。

    parse() 是spider的一个方法, 调用时候传入从每一个URL传回的Response对象作为参数。response是方法的唯一参数。

    这个方法负责解析response数据和提出抓取的数据(作为抓取的items),跟踪URLs

    parse()方法负责处理response和返回抓取数据(作为Item对象) 和跟踪更多的URLs(作为request的对象)

这是我们的第一个Spider的代码;它保存在moz/spiders文件夹中,被命名为dmoz_spider.py:
 

from scrapy.spider import BaseSpider
 
class DmozSpider(BaseSpider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
  "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
  "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
 ]
 
 def parse(self, response):
  filename = response.url.split("/")[-2]
  open(filename, 'wb').write(response.body)

为了使你的spider工作, 到项目的顶级目录让后运行:

scrapy crawl dmoz

crawl dmoz命令使spider去爬dmoz.org网站的信息。你将会得到如下类似的信息:

2008-08-20 03:51:13-0300 [scrapy] INFO: Started project: dmoz
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled extensions: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled downloader middlewares: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled spider middlewares: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled item pipelines: ...
2008-08-20 03:51:14-0300 [dmoz] INFO: Spider opened
2008-08-20 03:51:14-0300 [dmoz] DEBUG: Crawled <http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: <None>)
2008-08-20 03:51:14-0300 [dmoz] DEBUG: Crawled <http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: <None>)
2008-08-20 03:51:14-0300 [dmoz] INFO: Spider closed (finished)

注意那些行包含[dmoz], 它和我们的spider相关。你能够看见每行初始化的URL日志信息。因为这些URLs是起始页面,所以他们没有引用referrers。 所以在每行的末尾部门,你能看见(referer: ).

但是有趣的是,在我们的parse方法作用下,两个文件被创建: Books and Resources, 它保航两个URLs的内容
刚刚发生了什么事情?

Scrapy为每一个start_urls创建一个scrapy.http.Request对象,并将爬虫的parse 方法指定为回调函数。

这些Request首先被调度,然后被执行,之后通过parse()方法,将scrapy.http.Response对象被返回,结果也被反馈给爬虫。

提取Items
选择器介绍

我们有多种方式去提取网页中数据。Scrapy 使用的是XPath表达式,通常叫做XPath selectors。如果想了解更多关于选择器和提取数据的机制,可以看看如下教程XPath selectors documentation.

这里有一些表达式的例子和它们相关的含义:

  •     /html/head/title: 选择元素,在HTML文档的元素里
  •     /html/head/title/text(): 选择元素里面的文本
  •     //td: 选择所有的元素
  •     //div[@class="mine"]: 选择所有的div元素里面class属性为mine的
  • 这里有许多的例子关于怎么使用XPath,可以说XPath表达式是非常强大的。如果你想要学习更多关于XPath,我们推荐如下教程this XPath tutorial.

    为了更好使用XPaths, Scrapy提供了一个XPathSelector类,它有两种方式, HtmlXPathSelector(HTML相关数据)和XmlXPathSelector(XML相关数据)。如果你想使用它们,你必须实例化一个Response对象.

    你能够把selectors作为对象,它代表文件结构中的节点。所以,第1个实例的节点相当于root节点,或者称为整个文档的节点。

    选择器有三种方法(点击方法你能够看见完整的API文档)。

    •     select(): 返回选择器的列表,每一个select表示一个xpath表达式选择的节点。
    •     extract(): 返回一个unicode字符串 ,该字符串XPath选择器返回的数据。
    •     re() : 返回unicode字符串列表,字符串作为参数由正则表达式提取出来。


    在Shell里面使用选择器

    为了更加形象的使用选择器,我们将会使用Scrapy shell,它同时需要你的系统安装IPython (一个扩展的Python控制台)。

    如果使用shell,你必须到项目的顶级目录上,让后运行如下命令:

    scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/

    shell将会显示如下的信息

    [ ... Scrapy log here ... ]
    
    [s] Available Scrapy objects:
    [s] 2010-08-19 21:45:59-0300 [default] INFO: Spider closed (finished)
    [s] hxs  <HtmlXPathSelector (http://www.dmoz.org/Computers/Programming/Languages/Python/Books/) xpath=None>
    [s] item  Item()
    [s] request <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
    [s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
    [s] spider  <BaseSpider 'default' at 0x1b6c2d0>
    [s] xxs  <XmlXPathSelector (http://www.dmoz.org/Computers/Programming/Languages/Python/Books/) xpath=None>
    [s] Useful shortcuts:
    [s] shelp()   Print this help
    [s] fetch(req_or_url) Fetch a new request or URL and update shell objects
    [s] view(response) View response in a browser
    
    In [1]:
    
    

    当shell装载之后,你将会得到一个response的本地变量。所以你输入reponse.body,你能够看见response的body部分或者你能够输入response.headers,你能够看见reponse.headers部分。

    shell同样实例化了两个选择器,一个是HTML(在hvx变量里),一个是XML(在xxs变量里)。所以我们尝试怎么使用它们:

    In [1]: hxs.select('//title')
    Out[1]: [<HtmlXPathSelector (title) xpath=//title>]
    
    In [2]: hxs.select('//title').extract()
    Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>']
    
    In [3]: hxs.select('//title/text()')
    Out[3]: [<HtmlXPathSelector (text) xpath=//title/text()>]
    
    In [4]: hxs.select('//title/text()').extract()
    Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']
    
    In [5]: hxs.select('//title/text()').re('(\w+):')
    Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']
    
    
    
    

    提取数据Extracting the data

    现在我们开始尝试在这几个页面里提取真正的信息。

    你能够在控制台里面输入response.body,检查源代码里面的XPaths是否与预期相同。然而,检查原始的HTML代码是一件非常枯燥乏味的事情。假如你想让你的工作变的简单,你使用Firefox扩展的插件例如Firebug来做这项任务。更多关于介绍信息请看Using Firebug for scraping和Using Firefox for scraping。

    当你检查了页面源代码之后,你将会发现页面的信息放在一个

      元素里面,事实上,确切地说是第二个
        元素。

        所以我们选择每一个

      • 元素使用如下的代码:
         
        hxs.select('//ul/li')
        

        网站的描述信息可以使用如下代码:
         

        hxs.select('//ul/li/text()').extract()
        

        网站的标题:
         

        hxs.select('//ul/li/a/text()').extract()
        

        网站的链接:
         

        hxs.select('//ul/li/a/@href').extract()
        

        如前所述,每个select()调用返回一个selectors列表,所以我们可以结合select()去挖掘更深的节点。我们将会用到这些特性,所以:
         

        sites = hxs.select('//ul/li')
        for site in sites:
         title = site.select('a/text()').extract()
         link = site.select('a/@href').extract()
         desc = site.select('text()').extract()
         print title, link, desc
        
        Note
        
        


        如果想了解更多的嵌套选择器,可以参考Nesting selectors和Working with relative XPaths相关的Selectors文档
        将代码添加到我们spider中:

         

        from scrapy.spider import BaseSpider
        from scrapy.selector import HtmlXPathSelector
         
        class DmozSpider(BaseSpider):
         name = "dmoz"
         allowed_domains = ["dmoz.org"]
         start_urls = [
          "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
          "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
         ]
         
         def parse(self, response):
          hxs = HtmlXPathSelector(response)
          sites = hxs.select('//ul/li')
          for site in sites:
           title = site.select('a/text()').extract()
           link = site.select('a/@href').extract()
           desc = site.select('text()').extract()
           print title, link, desc
        

        现在我们再次抓取dmoz.org,你将看到站点在输出中被打印 ,运行命令:
         

        scrapy crawl dmoz
        

        使用我们的 item

        Item对象是自定义python字典;使用标准字典类似的语法,你能够访问它们的字段(就是以前我们定义的属性) 
         

        >>> item = DmozItem()
        >>> item['title'] = 'Example title'
        >>> item['title']
        'Example title'
        

        Spiders希望将抓取的数据放在 Item对象里。所以,为了返回我们抓取的数据,最终的代码要如下这么写 :

         

        from scrapy.spider import BaseSpider
        from scrapy.selector import HtmlXPathSelector
         
        from tutorial.items import DmozItem
         
        class DmozSpider(BaseSpider):
         name = "dmoz"
         allowed_domains = ["dmoz.org"]
         start_urls = [
          "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
          "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
         ]
         
         def parse(self, response):
          hxs = HtmlXPathSelector(response)
          sites = hxs.select('//ul/li')
          items = []
          for site in sites:
           item = DmozItem()
           item['title'] = site.select('a/text()').extract()
           item['link'] = site.select('a/@href').extract()
           item['desc'] = site.select('text()').extract()
           items.append(item)
          return items
        
        Note

        你能够找到完整功能的spider在dirbot项目里,同样你可以访问https://github.com/scrapy/dirbot

        现在重新抓取dmoz.org网站:

        [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
          {'desc': [u' - By David Mertz; Addison Wesley. Book in progress, full text, ASCII format. Asks for feedback. [author website, Gnosis Software, Inc.\n],
          'link': [u'http://gnosis.cx/TPiP/'],
          'title': [u'Text Processing in Python']}
        [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
          {'desc': [u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192, has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'],
          'link': [u'http://www.informit.com/store/product.aspx&#63;isbn=0130211192'],
          'title': [u'XML Processing with Python']}
        
        


        存储抓取的数据

        最简单的方式去存储抓取的数据是使用Feed exports,使用如下的命令:

         

        scrapy crawl dmoz -o items.json -t json
        

        它将会产生一个items.json文件,它包含所有抓取的items(序列化的JSON)。

        在一些小的项目里(例如我们的教程中),那就足够啦。然而,假如你想要执行更多复杂的抓取items,你能够写一个 Item Pipeline。 因为在项目创建的时候,一个专门用于Item Pipelines的占位符文件已经随着项目一起被建立,目录在tutorial/pipelines.py。如果你只需要存取这些抓取后的items的话,就不需要去实现任何的条目管道。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)