当你有多个进程或线程访问相同的数据时,竞争条件是一个威胁。本文探讨了在发现竞争条件后如何测试它们。
Incrmnt
你在一个名为“Incrmnt”的火热新创公司工作,该公司只做一件事情,并且做得比较好。
你展示一个全局计数器和一个加号,用户可以点击加号,此时计数器加一。这太简单了,而且容易使人上瘾。毫无疑问这就是接下来的大事情。
投资者们争先恐后的进入了董事会,但你有一个大问题。
竞争条件
在你的内测中,Abraham和Belinda是如此的兴奋,以至于每个人都点了100次加号按钮。你的服务器日志显示了200次请求,但计数器却显示为173。很明显,有一些请求没有被加上。
先将“Incrmnt变成了一坨屎”的新闻抛到脑后,你检查下代码(本文用到的所有代码都能在Github上找到)。
# incrmnt.py import db def increment(): count = db.get_count() new_count = count + 1 db.set_count(new_count) return new_count
你的Web服务器使用多进程处理流量请求,所以这个函数能在不同的线程中同时执行。如果你没掌握好时机,将会发生:
# 线程1和线程2在不同的进程中同时执行 # 为了展示的目的,在这里并排放置 # 在垂直方向分开它们,以说明在每个时间点上执行什么代码 # Thread 1(线程1) # Thread 2(线程2) def increment(): def increment(): # get_count returns 0 count = db.get_count() # get_count returns 0 again count = db.get_count() new_count = count + 1 # set_count called with 1 db.set_count(new_count) new_count = count + 1 # set_count called with 1 again db.set_count(new_count)
所以尽管增加了两次计数,但最终只增加了1。
你知道你可以修改这个代码,变为线程安全的,但是在你那么做之前,你还想写一个测试证明竞争的存在。
重现竞争
在理想情况下,测试应该尽可能的重现上面的场景。竞争的关键因素是:
?两个 get_count 调用必须在两个 set_count 调用之前执行,从而使得两个线程中的计数具有相同的值。
set_count 调用,什么时候执行都没关系,只要它们都在 get_count 调用之后即可。
简单起见,我们试着重现这个嵌套的情形。这里整 个Thread 2 在 Thread 1 的首个 get_count 调用之后执行:
# Thread 1 # Thread 2 def increment(): # get_count returns 0 count = db.get_count() def increment(): # get_count returns 0 again count = db.get_count() # set_count called with 1 new_count = count + 1 db.set_count(new_count) # set_count called with 1 again new_count = count + 1 db.set_count(new_count)
before_after 是一个库,它提供了帮助重现这种情形的工具。它可以在一个函数之前或之后插入任意代码。
before_after 依赖于 mock 库,它用来补充一些功能。如果你不熟悉 mock,我建议阅读一些优秀的文档。文档中特别重要的部分是 Where To Patch。
我们希望,Thread 1 调用 get_count 后,执行全部的 Thread 2 ,之后恢复执行 Thread 1。
我们的测试代码如下:
# test_incrmnt.py import unittest import before_after import db import incrmnt class TestIncrmnt(unittest.TestCase): def setUp(self): db.reset_db() def test_increment_race(self): # after a call to get_count, call increment with before_after.after('incrmnt.db.get_count', incrmnt.increment): # start off the race with a call to increment incrmnt.increment() count = db.get_count() self.assertEqual(count, 2)
在首次 get_count 调用之后,我们使用 before_after 的上下文管理器 after 来插入另外一个 increment 的调用。
在默认情况下,before_after只调用一次 after 函数。在这个特殊的情况下这是很有用的,因为否则的话堆栈会溢出(increment调用get_count,get_coun t也调用 increment,increment 又调用get_count…)。
这个测试失败了,因为计数等于1,而不是2。现在我们有一个重现了竞争条件的失败测试,一起来修复。
防止竞争
我们将要使用一个简单的锁机制来减缓竞争。这显然不是理想的解决方案,更好的解决方法是使用原子更新进行数据存储——但这种方法能更好地示范 before_after 在测试多线程应用程序上的作用。
在 incrmnt.py 中添加一个新函数:
# incrmnt.py def locking_increment(): with db.get_lock(): return increment()
它保证在同一时间只有一个线程对计数进行读写操作。如果一个线程试图获取锁,而锁被另外一个线程保持,将会引发 CouldNotLock 异常。
现在我们增加这样一个测试:
# test_incrmnt.py def test_locking_increment_race(self): def erroring_locking_increment(): # Trying to get a lock when the other thread has it will cause a # CouldNotLock exception - catch it here or the test will fail with self.assertRaises(db.CouldNotLock): incrmnt.locking_increment() with before_after.after('incrmnt.db.get_count', erroring_locking_increment): incrmnt.locking_increment() count = db.get_count() self.assertEqual(count, 1)
现在在同一时间,就只有一个线程能够增加计数了。
减缓竞争
我们这里还有一个问题,通过上边这种方式,如果两个请求冲突,一个不会被登记。为了缓解这个问题,我们可以让 increment 重新链接服务器(有一个简洁的方式,就是用类似 funcy retry 的东西):
# incrmnt.py def retrying_locking_increment(): @retry(tries=5, errors=db.CouldNotLock) def _increment(): return locking_increment() return _increment()
当我们需要比这种方法提供的更大规模的操作时,可以将 increment 作为一个原子更新或事务转移到我们的数据库中,让其在远离我们的应用程序的地方承担责任。
总结
Incrmnt 现在不存在竞争了,人们可以愉快地点击一整天,而不用担心自己不被计算在内。
这是一个简单的例子,但是 before_after 可以用于更复杂的竞争条件,以确保你的函数能正确地处理所有情形。能够在单线程环境中测试和重现竞争条件是一个关键,它能让你更确定你正在正确地处理竞争条件。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver Mac版
視覺化網頁開發工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver CS6
視覺化網頁開發工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版