搜尋
首頁後端開發Python教學Python yield 使用浅析

初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到底用来做什么,为什么要设计 yield ?本文将由浅入深地讲解 yield 的概念和用法,帮助读者体会 Python 里 yield 简单而强大的功能。

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?
我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数

复制代码 代码如下:

 def fab(max):
    n, a, b = 0, 0, 1
    while n         print b
        a, b = b, a + b
        n = n + 1

执行 fab(5),我们可以得到如下输出:
复制代码 代码如下:

 >>> fab(5)
 1
 1
 2
 3
 5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
复制代码 代码如下:

 def fab(max):
    n, a, b = 0, 0, 1
    L = []
    while n         L.append(b)
        a, b = b, a + b
        n = n + 1
    return L

可以使用如下方式打印出 fab 函数返回的 List:
复制代码 代码如下:

 >>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

复制代码 代码如下:

 for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:
复制代码 代码如下:

 for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
复制代码 代码如下:

 class Fab(object):

    def __init__(self, max):
        self.max = max
        self.n, self.a, self.b = 0, 0, 1

    def __iter__(self):
        return self

    def next(self):
        if self.n             r = self.b
            self.a, self.b = self.b, self.a + self.b
            self.n = self.n + 1
            return r
        raise StopIteration()


Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
复制代码 代码如下:

 >>> for n in Fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

复制代码 代码如下:

 def fab(max):
    n, a, b = 0, 0, 1
    while n         yield b
        # print b
        a, b = b, a + b
        n = n + 1

'''


第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
复制代码 代码如下:

 >>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

复制代码 代码如下:

 >>> f = fab(5)
 >>> f.next()
 1
 >>> f.next()
 1
 >>> f.next()
 2
 >>> f.next()
 3
 >>> f.next()
 5
 >>> f.next()
 Traceback (most recent call last):
  File "", line 1, in
 StopIteration
 

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

复制代码 代码如下:

 >>> from inspect import isgeneratorfunction
 >>> isgeneratorfunction(fab)
 True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

复制代码 代码如下:

 >>> import types
 >>> isinstance(fab, types.GeneratorType)
 False
 >>> isinstance(fab(5), types.GeneratorType)
 True
 
fab 是无法迭代的,而 fab(5) 是可迭代的:
复制代码 代码如下:

 >>> from collections import Iterable
 >>> isinstance(fab, Iterable)
 False
 >>> isinstance(fab(5), Iterable)
 True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

复制代码 代码如下:

 >>> f1 = fab(3)
 >>> f2 = fab(5)
 >>> print 'f1:', f1.next()
 f1: 1
 >>> print 'f2:', f2.next()
 f2: 1
 >>> print 'f1:', f1.next()
 f1: 1
 >>> print 'f2:', f2.next()
 f2: 1
 >>> print 'f1:', f1.next()
 f1: 2
 >>> print 'f2:', f2.next()
 f2: 2
 >>> print 'f2:', f2.next()
 f2: 3
 >>> print 'f2:', f2.next()
 f2: 5
 

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子

复制代码 代码如下:

 def read_file(fpath):
    BLOCK_SIZE = 1024
    with open(fpath, 'rb') as f:
        while True:
            block = f.read(BLOCK_SIZE)
            if block:
                yield block
            else:
                return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。
注:本文的代码均在 Python 2.7 中调试通过
陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分詞在景區評論分析中的準確性?如何提高jieba分詞在景區評論分析中的準確性?Apr 02, 2025 am 07:09 AM

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

如何使用正則表達式匹配到第一個閉合標籤就停止?如何使用正則表達式匹配到第一個閉合標籤就停止?Apr 02, 2025 am 07:06 AM

如何使用正則表達式匹配到第一個閉合標籤就停止?在處理HTML或其他標記語言時,常常需要使用正則表達式來�...

如何繞過Investing.com的反爬蟲機制獲取新聞數據?如何繞過Investing.com的反爬蟲機制獲取新聞數據?Apr 02, 2025 am 07:03 AM

攻克Investing.com的反爬蟲策略許多人嘗試爬取Investing.com(https://cn.investing.com/news/latest-news)的新聞數據時,常常�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中