本文实例讲述了Python多进程机制。分享给大家供大家参考。具体如下:
在以前只是接触过PYTHON的多线程机制,今天搜了一下多进程,相关文章好像不是特别多。看了几篇,小试了一把。程序如下,主要内容就是通过PRODUCER读一个本地文件,一行一行的放到队列中去。然后会有相应的WORKER从队列中取出这些行。
import multiprocessing import os import sys import Queue import time def writeQ(q,obj): q.put(obj,True,None) print "put size: ",q.qsize() def readQ(q): ret = q.get(True,1) print "get size: ",q.qsize() return ret def producer(q): time.sleep(5) #让进行休息几秒 方便ps命令看到相关内容 pid = os.getpid() handle_file = '/home/dwapp/joe.wangh/test/multiprocess/datafile' with open(handle_file,'r') as f: #with...as... 这个用法今天也是第一次看到的 for line in f: print "producer <" ,pid , "> is doing: ",line writeQ(q,line.strip()) q.close() def worker(q): time.sleep(5) #让进行休息几秒 方便ps命令看到相关内容 pid = os.getpid() empty_count = 0 while True: try: task = readQ(q) print "worker <" , pid , "> is doing: " ,task ''' 如果这里不休眠的话 一般情况下所有行都会被同一个子进程读取到 为了使实验效果更加清楚 在这里让每个进程读取完 一行内容时候休眠5s 这样就可以让其他的进程到队列中进行读取 ''' time.sleep(5) except Queue.Empty: empty_count += 1 if empty_count == 3: print "queue is empty, quit" q.close() sys.exit(0) def main(): concurrence = 3 q = multiprocessing.Queue(10) funcs = [producer , worker] for i in range(concurrence-1): funcs.append(worker) for item in funcs: print str(item) nfuncs = range( len(funcs) ) processes = [] for i in nfuncs: p = multiprocessing.Process(target=funcs[i] , args=(q,)) processes.append(p) print "concurrence worker is : ",concurrence," working start" for i in nfuncs: processes[i].start() for i in nfuncs: processes[i].join() print "all DONE" if __name__ == '__main__': main()
实验结果如下:
dwapp@pttest1:/home/dwapp/joe.wangh/test/multiprocess>python 1.py <function producer at 0xb7b9141c> <function worker at 0xb7b91454> <function worker at 0xb7b91454> <function worker at 0xb7b91454> concurrence worker is : 3 working start producer < 28320 > is doing: line 1 put size: 1 producer < 28320 > is doing: line 2 put size: 2 producer < 28320 > is doing: line 3 put size: 3 producer < 28320 > is doing: line 4 put size: 3 producer < 28320 > is doing: line 5 get size: 3 put size: 4 worker < 28321 > is doing: line 1 get size: 3 worker < 28322 > is doing: line 2 get size: 2 worker < 28323 > is doing: line 3 get size: 1 worker < 28321 > is doing: line 4 get size: 0 worker < 28322 > is doing: line 5 queue is empty, quit queue is empty, quit queue is empty, quit all DONE
程序运行期间在另外一个窗口进行ps命令 可以观测到一些进程的信息
dwapp@pttest1:/home/dwapp/joe.wangh/test/multiprocess>ps -ef | grep python dwapp 13735 11830 0 Nov20 pts/12 00:00:05 python dwapp 28319 27481 8 14:04 pts/0 00:00:00 python 1.py dwapp 28320 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28321 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28322 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28323 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28325 27849 0 14:04 pts/13 00:00:00 grep python dwapp@pttest1:/home/dwapp/joe.wangh/test/multiprocess>ps -ef | grep python dwapp 13735 11830 0 Nov20 pts/12 00:00:05 python #此时28320进程 也就是PRODUCER进程已经结束 dwapp 28319 27481 1 14:04 pts/0 00:00:00 python 1.py dwapp 28321 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28322 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28323 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28328 27849 0 14:04 pts/13 00:00:00 grep python dwapp@pttest1:/home/dwapp/joe.wangh/test/multiprocess>ps -ef | grep python dwapp 13735 11830 0 Nov20 pts/12 00:00:05 python dwapp 28319 27481 0 14:04 pts/0 00:00:00 python 1.py dwapp 28321 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28322 28319 0 14:04 pts/0 00:00:00 python 1.py dwapp 28323 28319 0 14:04 pts/0 00:00:00 [python] <defunct> #这里应该是代表28323进程(WORKER)已经运行结束了 dwapp 28331 27849 0 14:04 pts/13 00:00:00 grep python dwapp@pttest1:/home/dwapp/joe.wangh/test/multiprocess>ps -ef | grep python dwapp 13735 11830 0 Nov20 pts/12 00:00:05 python dwapp 28337 27849 0 14:05 pts/13 00:00:00 grep python
希望本文所述对大家的Python程序设计有所帮助。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

記事本++7.3.1
好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。